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Abstract.  In this paper, we propose a method to classify movie review documents into 
positive or negative opinions. There are several approaches to classify documents. The 
previous studies, however, used only a single classifier for the classification task. We 
describe a multiple classifier for the review document classification task. The method 
consists of three classifiers based on SVMs, ME and score calculation. We apply two 
voting methods and SVMs to the integration process of single classifiers. The integrated 
methods improved the accuracy as compared with the three single classifiers. The 
experimental results show the effectiveness of our method. 
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1. Introduction 
The World Wide Web contains a huge number of on-line documents that are easily accessible. 
Finding information relevant to user needs has become increasingly important. The most 
important information on the Web is usually contained in the text. We obtain a huge number of 
review documents that include user’s opinions for products. For example, buying products, 
users usually survey the product reviews. Movie reviews are likewise one of the most important 
information for users who go to a movie. More precise and effective methods for evaluating the 
products are useful for users. 
 Many researchers have recently studied extraction of evaluative expressions and classification 
of opinions (Kobayashi et al., 2005; Osajima et al., 2005; Pang et al., 2002; Turney, 2002). 
Studies of opinion classification are generally classified into three groups: (1) classifying 
documents into the positive (p) or negative (n) opinions, (2) classifying sentences into the 
positive or negative opinions, and (3) classifying words into the positive or negative expressions. 
In this paper, we focus on the classification of movie review documents. Pang et al. (2002) have 
reported the effectiveness of applying machine learning techniques to the p/n classification. 
They compared three machine learning methods: Naive Bayes, Maximum Entropy and Support 
Vector Machines. In their experiment, SVMs produced the best performance. Osajima et al. 
(2005) have proposed a method for polarity classification of sentences in review documents. 
The method is based on a score calculation process of word polarity and outperformed SVMs in 
the sentence classification task. 
 The previous studies, however, used only a single classifier for the classification task. We 
(Tsutsumi 2006 et al.) have proposed a method consisting of two classifiers: SVMs and the 
scoring method by Osajima et al. (2005). The method identified the class (p/n) of a document on 
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the basis of the distances that were measured from the hyperplane of each classifier. It obtained 
the better accuracy as compared with the single classifiers. This method, however, contained a 
problem for the determination of the final output, namely positive or negative. We needed to 
normalize the classifier’s outputs manually because the scale of the scoring method was 
different from that of SVMs. 
 To solve this problem, we apply the 3rd machine learning method (Maximum Entropy) into 
the method based on the scoring and SVMs. Figure 1 shows the outline of the proposed method. 
In this paper, we compare three processes for the method: naive voting, weighted voting and 
determination with SVMs. 

 

Fig. 1.The outline of our method. 

 

2. Classifiers 
In this section, we explain classifiers for a multiple classifier that will be proposed in this paper. 
The 1st and 2nd classifiers are SVMs and Maximum Entropy respectively. These classifiers 
have been used in related work by Pang et al. (2002). In their paper, they reported that SVMs 
produced the best performance. The 3rd classifier is based on polarity scores of words in 
documents. The method is an expansion of Osajima et al. (2005). 
 

2.1.SVMs 
SVMs are a machine learning algorithm that was introduced by Vapnik (1999). They have been 
applied to tasks such as face recognition and text classification. An SVM is a binary classifier 
that finds a maximal margin separating hyperplane between two classes. The hyperplane can be 
written as: 

bxwyi +⋅=   (1) 



where x  is an arbitrary data point, i.e., feature vectors, w  and b  are decided by optimization, 
and { }1,1 −+∈iy . The instances that lie closest to the hyperplane are called support vectors. We 
use SVMlight package1 for training and testing, with all parameters set to their default values 
(Joachims, 1999). 
 

2.2.Maximum Entropy 
Maximum entropy modeling (ME) is one of the best techniques for natural language processing 
(Berger et al., 1996). The principle of the ME is expressed as follows: 
 

( ) ( ) ( )⎟
⎠

⎞
⎜
⎝

⎛
= ∑

Λ
Λ

i
cici cdf

dZ
dcP ,exp1| ,,λ     (2) 

( ) ( )∑ ∑ ⎟
⎠

⎞
⎜
⎝

⎛
=Λ

cd i
cici cdfdZ

,
,, ,exp λ   (3) 

 
where )(dZΛ  is a normalization function. { }nλλ ,,1 K=Λ  are parameters for the model. 
These parameters denote weights and significance of each feature. The parameter values are a 
set that maximizes the entropy concerning the classifier. ( )cdf ci ,,  is a feature function that is 
defined as follows: 
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where ),( idexist  is a indicator function. The value is 1 in the case that a feature i  exists in a 
document d . 
 In this paper we use Amis, which is a parameter estimator for maximum entropy models2. We 
estimate parameters by using the generalized iterative scaling algorithm. 

 

2.3.Scoring 
Osajima et al. (2005) have proposed a method for polarity classification of sentences in review 
documents. The method is based on a score calculation process of word polarity. In this paper 
we apply some adjustments to the feature selection of the method. 
 First we explain score calculation of each word. The score of a word iw  is computed as 
follows: 
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where ( )iwpos  and ( )iwneg  are the frequency of a word iw  in the positive opinions and the 

negative opinions respectively. ∑ pos and ∑neg are the number of words in the positive and 
negative opinions respectively. 
 In the classification process, we compute the sum of scores of which words appear in a 
document d . 
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where d  denotes a document. The )( iW wScore  are given by Eq. 5. Finally, we evaluate the 
score as follows: 
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As expansions, we apply two conditions to the feature selection of the classifier. 
− Use of POS tags 

We use weighted scores for adjective words. 
− Selection with 2χ -test 

We select features for the classifier by using the result of 2χ -test. We reject words that 
possess low reliability. We set 20% on the significant level for the experiment. 
 

3. Integration of classifiers 
We examined the outputs of three classifiers, i.e. an error analysis. As a result, we obtained 
knowledge that the misclassifications of each classifier are often different, that is exclusive 
misclassifications. In other words, a single classifier could classify a document correctly even 
though other single classifiers could not classify it correctly. This result shows the significance 
of integration of single classifiers. 
 In this section we explain three methods for combining the classifiers. In this paper we adopt 
two voting processes, naive voting and weighted voting, and integration with SVMs. 
 
Naive voting  As the final output, we use the majority vote from three classifiers, namely SVMs, 

ME and Scoring methods. 
Weighted voting This method uses each distance from hyperplanes of each classifier as weights 

(confidence) of the outputs. This is based on a supposition that an output that is close to the 
hyperplane of a classifier contains low reliability. However ranges of each distance 
computed from each classifier are not equivalent. We normalize each distance as follows. 
Scoring: The actual value of the output from the classifier 
SVM: lddist ×)(  
ME: mdnegativepdpostivep ×− )),(),((  
where )(ddist  is the distance from the hyperplane. ),( dpostivep  and ),( dnegativep  

are the probabilities of a document d as positive and negative opinions. l and m are constant 
numbers for the normalization. The values are computed beforehand from training data. In 
other words, the values are determined from the results obtained from training data by 
using each classifier constructed from it. l and m in this paper are based on the average of 
the distance from the hyperplane in the classification results. 

SVMs We use SVMs again for the integration process of single classifiers. Here the features for 
SVMs are the three outputs of each single classifier, namely distances from hyperplanes. 
We do not normalize each output. First, we need to construct training data for SVMs in this 
integration process. In this paper we use the same training data for learning both the single 
classifier and the integration process. In other words, this SVM obtains a hyperplane for the 
integration from the training data that is used in the learning process of the single 
classifiers. Figure 2 shows the outline of the process. 

 



 
Fig. 2.The integration process with SVMs. 

4. Experiment 
In this section, we explain a dataset and basic feature selection for this experiment first. Then 
we evaluate our methods with the dataset and compare them with single classifiers. 
 

4.1.Dataset and features for the classifiers 
First we describe the data set for the experiment. We evaluated our method with movie review 
documents that were used in Pang et al. (2002). The dataset consists of 700 positive reviews and 
700 negative reviews. We divided the data into three equal-sized folds in the same manner as 
the previous work (Pang et al., 2002). In other words, we tested our method with three-fold 
cross-validation. 
 We extracted basic features for classifiers in the same way the previous work did. The 
conditions of the previous work for the feature selection were as follows: (1) no stemming or 
stopword lists were used, (2) use of the negation tag, and (3) limitation of the frequency of 
words. For the 2nd condition, we added the tag “NOT_” to every word between a negation 
word (“not”, “isn’t”, “didn’t”, etc.) and the first punctuation mark following the negation word3. 
For the 3rd condition, we used words appearing at least four times in our 1400-document 
corpus.  

We constructed the feature space for each classifier on the basis of the basic features. For the 
scoring method, we used features extracted with the conditions described in Section 2.3 (use of 
POS tags and χ 2-test). For the tagging, we used the Brill’s Tagger4. However, we used basic 
features for SVMs and ME5. 
 

4.2.Experimental results 
First, we compared six methods in this experiment: single classifiers (SVMs, ME and Scoring) 
and the proposed method based on naive voting, weighted voting and SVMs. Table 1 shows the 
experimental result6.  

As a result, our methods, namely multiple classifiers, outperformed single classifiers. Even the 
naive voting produced higher accuracy than these methods. This result shows the effectiveness 
of our method consisting of some classifiers. 
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Table 1.The experimental result 

 
 

 In this experiment, the integration method with SVMs produced the best performance. For the 
weighted voting, we used the values computed beforehand from training data: l and m. If we 
tuned up these values optimally, the accuracy was 87.5%. This result denotes that the weighting 
process was one of the most important processes in the multiple classifier. The weighting 
process in this paper was a very simple weighting method. It was based on the average of 
distance obtained from a tentative dataset. 
 One approach to improve the accuracy is refinements to the weighting for the voting process. 
Boosting is one of the most famous techniques in ensemble learning methods (Freund and 
Schapier, 1996). We applied the boosting algorithm to the integration process. In the method, 
SVMs, Scoring and ME are weak learners for the boosting. However the accuracy was lower 
than SVMs and the weighted voting method. To improve the accuracy, we need to add other 
machine learning methods as weak learners. Furthermore, we need to consider other ensemble 
learning methods, such as Bagging (Breiman, 1996) and Random Forests (Breiman, 2001). 
 In this paper we used BOWs for the feature set of the classifiers. Matsumoto et al. (2005) have 
argued the significance of syntactic relations between words, that is frequent word sub-
sequences and dependency sub-trees. For their experiment with the same dataset, using 
dependency sub-trees led to the improvement of the accuracy: the accuracy was 87.3%. Bai et al. 
(2004) have proposed a new method based on a two-stage Bayesian algorithm that is able to 
capture the dependencies among words. The accuracy of this method was 87.5%. Although the 
feature set for our method was very simple and naive (BOWs), the accuracy was equivalent as 
compared with these methods that used relations between words. Furthermore, since our method 
can incorporate other single classifiers flexibly, applying them as single classifiers boosts up the 
accuracy rate of our method. 
 We also need to handle the confidence of each classifier’s output appropriately. In this paper 
we regarded the confidence computed from the output of a classifier as a linear function. 
However, Platt (1999) has reported a method to convert the output of SVMs into probability by 
using the sigmoid function and showed the effectiveness as a probability function. We need to 
consider a method for converting the output to the best suited confidence. 
 Next we explain a coverage rate of the proposed method. Our method can not classify a 
document into positive or negative correctly if every single classifier for the multiple classifier 
classifies it incorrectly. In other words, our method contains the possibility that it can classify a 
document correctly if a single classifier identifies the class label (p/n) of a document correctly. 
Therefore the coverage of our method for this dataset is computed as follows: 

N
CorrectNumCoverage =  

where N is the number of documents in test data. CorrectNum  is the number of documents 
that are classified correctly by at least one classifier. The result is shown in Table 2. The 
coverage with three classifiers was 94.9% although the best accuracy in this experiment was 



87.1% (See Table 1). This result shows that our method, namely a multiple classifier, can 
improve the classification accuracy essentially. 

Table 2.The Coverage 

 
 

5. Conclusion 
In this paper, we proposed a method to classify movie review documents into positive or 
negative opinions. The method consisted of three classifiers based on SVMs, ME and score 
calculation. We compared two voting process, naive voting and weighted voting, and the 
integration with SVMs for the method. Our methods consisting of three classifiers outperformed 
single classifiers. Even the naive voting produced higher accuracy than these classifiers. In this 
experiment, SVMs in the integration process produced the best performance. If we tuned up the 
weights for the voting method optimally, it obtained the best accuracy. Our future work includes 
(1) evaluation with the ensemble learning methods, (2) addition of other single classifiers and 
(3) use of other feature sets, such as dependency trees, for classifiers 
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