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Abstract: Separating the direct component such as diffuse reflection and specular reflection and the global component
such as inter-reflection and subsurface scattering is important for various computer vision and computer graph-
ics applications. Conventionally, high-frequency patterns designed by physics-based model or signal process-
ing theory are projected from a projector to a scene, but their assumptions do not necessarily hold for real
images due to the shallow depth of field of a projector and the limited spatial resolution of a camera. Accord-
ingly, in this paper, we propose a data-driven approach for direct-global separation. Specifically, our proposed
method learns not only the separation module but also the imaging module, i.e. the projection patterns at the
same time in an end-to-end manner. We conduct a number of experiments using real images captured with a
projector-camera system, and confirm the effectiveness of our method.

1 Introduction

When a scene is illuminated by a light source, the ra-
diance value observed at each point in the scene con-
sists of two components: a direct component and a
global component (Nayar et al., 2006). The direct
component such as (direct) diffuse reflection and (di-
rect) specular reflection is caused by the light rays
directly coming from the light source. On the other
hand, the global component is caused by the light rays
coming from the points in the scene other than the
light source due to inter-reflection, subsurface scatter-
ing, volumetric scattering, diffusion, and so on. Sepa-
rating those components is important for various com-
puter vision and computer graphics applications such
as shape recovery, image-based material editing, and
image quality improvement (Nayar et al., 2006; Gu
et al., 2011).

Nayar et al. (Nayar et al., 2006) show that the di-
rect and global components can be separated in the-
ory from at least two images captured by projecting
spatially high-frequency patterns to a scene of inter-
est from a projector. Specifically, they assume that
the global components are band-limited with a certain
frequency, and make use of a black-and-white check-
ered pattern and its negative-positive reversed pattern
with an appropriate interval. Unfortunately, however,
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the direct-global separation from the two images often
causes artifacts around the boundaries in the black-
and-white patterns. This is because the patterns are
blurred due to the shallow depth of field of a pro-
jector and the limited spatial resolution of a camera.
Therefore, the direct-global separation requires many
images, e.g. 25 images, captured by projecting the
shifted checkered patterns in practice (Nayar et al.,
2006).

To cope with the problem of the number of re-
quired images, Subpa-Asa et al. (Subpa-Asa et al.,
2018) and Duan et al. (Duan et al., 2020) propose
the direct-global separation from a single image. The
former uses a single checkered pattern, but separates
the direct and global components by using the linear
basis representation: the Fourier basis or PCA basis.
The latter makes use of non-binary patterns with 4 or
9 intensities instead of a binary checkered pattern, and
then separates the direct and global components via a
learning-based approach.

However, there is still room for improvement, es-
pecially in projection patterns and optimization. First,
the projection patterns are conventionally designed by
physics-based model or signal processing theory (Na-
yar et al., 2006; Gu et al., 2011; Torii et al., 2019;
Duan et al., 2020; Nisaka et al., 2021), but the as-
sumptions of those model and theory do not necessar-
ily hold for real images due to the shallow depth of
field of a projector and the limited spatial resolution



of a camera. Second, the existing methods optimize
only the separation module (Subpa-Asa et al., 2018)
or optimize the projection pattern and the separation
module on the basis of the different approaches (Duan
et al., 2020). Since the projection patterns and the
separation module depend on each other, the better
separation results could be expected by optimizing
them in an end-to-end manner.

Accordingly, in this paper, we propose a data-
driven method for direct-global separation. Specifi-
cally, our proposed method learns not only the sepa-
ration module but also the imaging module, i.e. the
projection patterns at the same time in an end-to-end
manner. Especially, we focus on the fact that gen-
eral projection patterns can be represented by (1×1)
convolution kernels on the basis of the superposi-
tion principle, and then simultaneously optimize the
projection patterns and the separation module in the
framework of convolutional neural network (CNN).
We conduct a number of experiments using real im-
ages captured with a projector-camera system, and
confirm the effectiveness of our method.

The main contributions of this paper are threefold.
First, we tackle a novel problem of data-driven direct-
global separation that learns not only the separation
module but also the imaging module. Second, we
show that the projection patterns and the separation
module can be optimized in an end-to-end manner
by using the framework of CNN. Third, we exper-
imentally confirm the effectiveness of our proposed
method, in particular the data-driven projection pat-
terns and the end-to-end optimization.

2 Related Work

2.1 Direct-Global Separation

Nayar et al. (Nayar et al., 2006) propose a method
for separating the direct and global components in a
scene by projecting high-frequency patterns such as
black-and-white checkered patterns from a projector
to the scene on the basis of the insight that global
components are low-frequency in general. We can
consider that their method consists of two modules;
one is the imaging module that captures the images
of a scene by projecting high-frequency patterns to it,
and the other is the separation module that separates
those components from the captured images. Then,
we summarize the existing techniques from the view-
points of the imaging and separation modules.

Regarding the imaging module, Nayar et al. (Na-
yar et al., 2006) themselves demonstrate that other
high-frequency patterns such as stripe patterns and

sinusoid-based patterns can be used instead of check-
ered patterns. In addition, a number of projection pat-
terns are proposed on the basis of signal processing
theory, in particular signal-to-noise ratio (SNR) anal-
ysis. Gu et al. (Gu et al., 2011) optimize a set of high-
frequency patterns in terms of SNR on the basis of il-
lumination multiplexing (Schechner et al., 2003), and
then extend the original direct-global separation for a
single light source to that for multiple light sources.
Torii et al. (Torii et al., 2019) make use of the tem-
poral dithering of a DLP projector (Narasimhan et al.,
2008), and achieves multispectral direct-global sepa-
ration of dynamic scenes. They optimize the two in-
tensities of the checkered patterns in terms of SNR.
Similarly, Nisaka et al. (Nisaka et al., 2021) achieve
the separation of specular, diffuse, and global com-
ponents via polarized pattern projections. Duan et
al. (Duan et al., 2020) designed non-binary patterns
with 4 or 9 intensities instead of a binary checkered
pattern for the direct-global separation from a single
image. Unfortunately, those projection patterns de-
signed by physics-based model or signal processing
theory are not necessarily suitable for real scenes, be-
cause the assumptions of those model and theory do
not necessarily hold for real images due to the shallow
depth of field of a projector and the limited spatial res-
olution of a camera.

Regarding the separation module, some ap-
proaches are proposed. The original direct-global
separation by Nayar et al. (Nayar et al., 2006) is based
on the physics model. Subpa-Asa et al. (Subpa-Asa
et al., 2018) propose a statistics-based approach; they
achieve the direct-global separation from a single im-
age by using the linear representation with the Fourier
basis or PCA basis. Nie et al. (Nie et al., 2019) and
Duan et al. (Duan et al., 2020) propose a learning-
based approach to the direct-global separation from a
single image. The former is based on cycleGAN (Zhu
et al., 2017) with uniform white lighting, and the latter
is based on U-Net (Ronneberger et al., 2015) with the
non-binary patterns. The learning-based approach re-
ports impressive results, but there is still room for im-
provement; we can optimize both the imaging module
and the separation module in an end-to-end manner.

In contrast to the above existing techniques, our
proposed method learns not only the separation mod-
ule but also the imaging module, i.e. projection pat-
terns. In addition, our method simultaneously opti-
mizes the imaging module and the separation module
in an end-to-end manner.



Figure 1: Our proposed network with the imaging module and the separation module. The input to the imaging module is
a set of basis projection patterns and the images captured by projecting those basis patterns, and its output is the optimal
imaging condition, i.e. the optimal projection patterns and the images under the optimal imaging condition. The input to the
separation module is the output from the imaging module, and its output is the predicted separation result, i.e. the direct and
global components of the images. (a) In the training phase, the imaging module and the separation module are trained on the
basis of the loss function L in an end-to-end manner. (b) In the test phase, we actually capture the images under the trained
optimal illumination condition, and then separate the direct and global components by using the trained separation module.

2.2 Deep Optics/Sensing

Recently, a number of deep networks that optimize
not only application modules but also imaging mod-
ules in an end-to-end manner have been proposed.
This approach is called deep optics or deep sens-
ing. A seminal work by Chakrabarti (Chakrabarti,
2016) optimizes the color filter array as well as the
demosaicing algorithm in an end-to-end manner. Fol-
lowed by it, the idea of end-to-end optimization of the
imaging modules and the application modules is used
for hyperspectral reconstruction (Nie et al., 2018),
image-based relighting (Xu et al., 2018), compres-
sive video sensing (Yoshida et al., 2018), light field
acquisition (Inagaki et al., 2018), passive single-view
depth estimation (Wu et al., 2019), single-shot high-
dynamic-range imaging (Metzler et al., 2020; Sun
et al., 2020), seeing through obstructions (Shi et al.,
2022), privacy-preserving depth estimation (Tasneem
et al., 2022), hyperspectral imaging (Li et al., 2023),
and time-of-flight imaging (Li et al., 2022).

Our study also belongs to deep optics/sensing. In
contrast to most existing methods that optimize the
properties of a camera/sensor as well as the appli-
cation modules, our proposed method optimizes the
properties of a light source (projection patterns) as
well as the application module.

3 Proposed Method

3.1 Overview

Our proposed network consists of two modules: the
imaging module and the separation module. Figure 1

illustrates the outline of our network. The input to the
imaging module is a set of basis projection patterns
and the images captured by projecting those basis pat-
terns. The output from the imaging module is the op-
timal imaging condition, i.e. the optimal projection
patterns and the images under the optimal imaging
condition. The input to the separation module is the
output from the imaging module. The output from the
separation module is the predicted separation result,
i.e. the direct and global components of the images.

In the training phase, we train several networks,
in each of which the number of images N required
for separation is fixed. We train our proposed net-
work in an end-to-end manner by using the ground
truth of the direct and global components as shown
in Figure 1 (a). Then, we obtain the optimal projec-
tion patterns and the separation module that separates
the direct and global components from the images ac-
quired under the optimal imaging condition.

In the test phase, we make use of the trained op-
timal imaging condition and the trained separation
module as shown in Figure 1 (b). Specifically, we ac-
tually capture the images of a scene/an object by pro-
jecting the optimal projection patterns and then sepa-
rates the direct and global components from the cap-
tured images by using the separation module. The
following subsections explain the details of our net-
work.

3.2 Imaging Module

In the same manner as the existing methods (Duan
et al., 2020), we represent the entire projection pat-
tern by repeating a fundamental projection pattern as
shown in Figure 2 (a). Since the discontinuous bound-



Figure 2: Projection patterns: (a) the entire black-and-white
checkered pattern (left) represented by repeating a funda-
mental pattern (right), and (b) a part of the DCT basis func-
tions for representing a fundamental pattern as their linear
combination.

Figure 3: The superposition principle; when we represent
the fundamental projection pattern (top left) as the linear
combination of the basis functions of the DCT, the image
captured by projecting the fundamental projection pattern
(bottom left) is also represented as the linear combination
of the images captured by projecting each of the basis func-
tions by using the same coefficients wm.

aries between the black-and-white checkered pattern
often cause artifacts in the separation results, we rep-
resent the fundamental projection pattern as the linear
combination of smooth basis functions, the DCT basis
functions in our implementation 1. Since the direct-
global separation assumes that the global compo-
nents are band-limited with a certain frequency (Na-
yar et al., 2006), we use a part of the DCT basis func-
tions with low frequencies shown in Figure 2 (b) 2.
We denote the number of the basis functions by M.

According to the superposition principle, an im-
age of an object taken under two light sources is a
linear combination (convex combination in a strict
sense) of the two images, each of which is captured
under one of the light sources. Therefore, we can
represent the image captured by projecting the fun-
damental projection pattern as the linear combina-
tion of the images captured by projecting each of
the low-frequency DCT basis functions. Here, the
fundamental projection pattern and the image cap-
tured by projecting the fundamental projection pattern
share the same coefficients of the linear combination
wm (m = 1,2,3, ...,M) as shown in Figure 3.

In order to optimize the projection patterns, we fo-

1We impose the continuity constraints on the bound-
aries of the fundamental projection patterns so that there
are no discontinuous boundaries.

2Note that the entire projection patterns repeating the
fundamental projection patterns are high-frequency ones.

Figure 4: The (1×1) convolution; the imaging module rep-
resents a fundamental projection pattern (right) as a linear
combination of the M basis functions (left). It is represented
by the sum of the products between the pixel values at each
pixel of the basis functions and the coefficients of the linear
combination wm.

cus on the fact that general projection patterns can be
represented by (1×1) convolution kernels on the ba-
sis of the superposition principle. Specifically, since
the fundamental projection patten is a linear combi-
nation of the low-frequency DCT basis functions, it
is represented by the sum of the products between the
pixel values at each pixel of the DCT basis functions
and the coefficients of the linear combination wm as
shown in Figure 4. It is the same for the image cap-
tured by projecting the fundamental projection pat-
tern. Thus, the weights of the (1×1) convolution ker-
nel correspond to the coefficients of the linear combi-
nation wm. Note that when we use N images (and pro-
jection patterns) for separation, we use N convolution
kernels and then optimize N ×M weights in total.

Finally, we add two artificial noises to the im-
ages under the optimal imaging condition: one obeys
Gaussian distribution 3 and the other obeys uniform
distribution. The latter is for taking the quantization
of a pixel value into consideration. Therefore, the im-
age taken under darker projection pattern is more con-
taminated by the quantization errors of pixel values.

3.3 Separation Module

Note that our substantive proposals are the imaging
module and the end-to-end optimization of the imag-
ing module and the separation module. Then, we
could use an arbitrary end-to-end network for the sep-
aration module.

In our current implementation, we use the well-
known U-Net architecture (Ronneberger et al., 2015),
i.e. an encoder-decoder structure with skip connec-
tions. It is widely used not only for image-to-image

3We use real images which inherently contain noises for
training, but random noises are almost canceled out by lin-
early combining the images. Therefore, we add artificial
noises to the linear combination of the real images in order
to simulate the noises in one-shot image taken under multi-
ple light sources.



Figure 5: Our separation module; it has dual decoders for
recovering direct and global components, but shares a single
encoder.

Figure 6: Our projector-camera system with a half mirror
(left); the correspondence between the projector pixels and
the camera pixels is invariant to the depths of scenes (right).

translation (Isola et al., 2017; Liu et al., 2018; Ho
et al., 2020; Rombach et al., 2022) but also for deep
optics/sensing (Nie et al., 2018; Xu et al., 2018;
Wu et al., 2019; Duan et al., 2020; Metzler et al.,
2020; Sun et al., 2020; Shi et al., 2022). Since deep
optics/sensing often adds a kind of imaging mod-
ule ahead of a conventional application module, the
skip connections, which allows information to reach
deeper layers and can mitigate the problem of vanish-
ing gradients, are important.

Figure 5 illustrates our separation module. It has
dual decoders; one is for recovering direct compo-
nents and the other is for recovering the global com-
ponents. Those decoders share a single encoder.
We use the batch normalization (Ioffe and Szegedy,
2015), the convolution with the kernel size of 3× 3,
the activation function of the ELU (Clevert et al.,
2016), the max pooling with the size of 2 × 2, and
the deconvolution with the kernel size of 3×3. In or-
der to mitigate the vanishing gradients problem, we
use the Residual Blocks (He et al., 2016) in addition
to the skip connections.

3.4 Optimization

Thus, the projection patterns can be represented by
using convolution kernels as explained in Section 3.2.

Therefore, we simultaneously optimize them as well
as the separation module via a CNN-based network in
an end-to-end manner.

Our proposed network is trained by minimizing
the loss function L defined as

L = Ld +Lg +Lp. (1)

The first and second terms come from the direct and
global components, and the third term comes from
the projection patterns. Specifically, the first and sec-
ond terms are the mean squared errors between the
predicted components and the ground-truth compo-
nents. The third term penalizes the fundamental pat-
terns with the squared L2 norm, if their intensities are
smaller or larger than the range of the projector out-
put.

4 Experiments

4.1 Projector-Camera System

As shown in Figure 6, we used a projector-camera
system with a half mirror. The projector and the cam-
era were placed so that they have the same projection
centers and optical axes, and then the correspondence
between the projector pixels and the camera pixels is
invariant to the depths of scenes (Narasimhan et al.,
2008). The use of the half mirror is because our
proposed method using the learned projection patters
cannot automatically estimate the intensity of pro-
jected light at each pixel of the captured image, in
contrast to Nayar et al. (Nayar et al., 2006) using
a black-and-white checkered pattern and its reversed
pattern. We used an LED projector of P970 from
Crosstour and a color camera of Blackfly S USB3
from FLIR.

We calibrated the correspondence between the
projector pixels and the camera pixels via homogra-
phy in advance. We confirmed that the radiometric
response function of the camera is linear, but that of
the projector is non-linear. The radiometric response
function of the projector was calibrated by using the
set of images captured with varying input pixel values
of the projector.

4.2 Setup

We captured the images of 26 scenes; the images of
22, 1, and 3 scenes were used for training, valida-
tion, and test respectively. We cropped 150 parches
with 80×80 pixels from each captured image. There-
fore, the actual number of scenes are considered to
be 3,300, 150, and 450 for training, validation, and



Table 1: The quantitative comparison of the projection pattern in terms of the PSNR and SSIM.

scene 1 scene 2 scene 3
direct global direct global direct global

N = 1 Ours PSNR 34.50 35.52 34.62 35.88 31.20 33.67
SSIM 0.952 0.939 0.944 0.933 0.903 0.909

Duan PSNR 32.55 34.46 33.15 35.46 29.31 33.38
SSIM 0.931 0.934 0.923 0.934 0.862 0.915

N = 2 Ours PSNR 35.25 36.65 37.36 34.63 34.87 34.20
SSIM 0.964 0.945 0.962 0.919 0.953 0.915

Nayar PSNR 20.21 19.64 24.27 23.75 21.53 20.93
SSIM 0.621 0.697 0.664 0.780 0.637 0.706

N = 3 Ours PSNR 36.45 38.03 37.76 37.88 36.20 37.32
SSIM 0.965 0.952 0.960 0.929 0.952 0.926

Figure 7: Some examples of the scenes; they contain objects
with subsurface scattering and inter-reflections.

test respectively. Figure 7 shows some examples of
the scenes; they contain objects such as candles, ping
pong balls, cloths, and wrapping papers with subsur-
face scattering and inter-reflections. We obtained the
ground truths of the direct and global components of
those scenes from the 25 images captured by project-
ing the shifted checkered patterns (Nayar et al., 2006).

We consider the fundamental projection patterns
with 20 × 20 pixels. As described in Section 3.2,
since the direct-global separation assumes that the
global components are band-limited with a certain
frequency, we use a part of the DCT basis functions
with low frequencies. Specifically we used 16 (= M)
basis functions of the DCT out of the 400 (= 20×20)
basis functions. We experimentally confirmed that
we can approximately represent the black-and-white
checkered patten by using the 16 basis functions.

We used the optimization algorithm of the
Adam (Kingma and Ba, 2016) for training. We set
the initial learning rate to 0.01, and then changed it to
0.001 and 0.0001. We set the attenuation coefficients
as β1 = 0.9 and β2 = 0.999. The all of the weights
of our network are initialized by using the He normal
initialization (He et al., 2015). We used a desktop PC
with a graphics card of GeForce RTX 3090 for train-
ing. It took about four hours for training our proposed
network with about 200 epochs.

4.3 Results

To confirm the effectiveness of the data-driven projec-
tion patterns and the end-to-end optimization of the
imaging module and the separation module, we com-
pared the following three methods:

• Our proposed method: the direct-global separa-
tion from N (N = 1,2,3) images. Both the imag-
ing module (projection patterns) and the separa-
tion module are trained in an end-to-end manner.

• Duan et al. (Duan et al., 2020) : the state-of-the-
art method for the direct-global separation from a
single image. The single projection pattern with 4
intensities 4 is based on the signal processing the-
ory but the separation module is learning-based.

• Nayar et al. (Nayar et al., 2006): the baseline
method for the direct-global separation from two
images. Both the projection patterns and the sep-
aration module are based on the physics model.

In our current implementation, we trained the sepa-
ration module of Duan et al. (Duan et al., 2020) by
using our network for the fixed projection pattern.

Figure 8 summarizes the qualitative comparison
with those methods: (a) the ground-truth images of
the direct and global components, (b) the results of
our proposed method using a single image, (c) the re-
sults of Duan et al. (Duan et al., 2020) using a single
image, (d) the results of our method using two images,
(e) the results of Nayar et al. (Nayar et al., 2006) us-
ing two images, and (f) the results of our method us-
ing three images from left to right, and the projection
patterns, the results of the scenes 1, 2, and 3 from top
to bottom. We can see that (b) our method and (c)
Duan et al. work better than (e) Nayar et al., even
though the formers use only a single image and the

4It is reported that the projection pattern with 4 intensi-
ties outperforms that with 9 intensities.



Figure 8: The qualitative comparison of the projection patterns: (a) the ground truth from 25 images, (b) the results of our
proposed method using a single image, (c) the results of Duan et al. (Duan et al., 2020) using a single image, (d) the results
of our method using two images, (e) the results of Nayar et al. (Nayar et al., 2006) using two images, and (f) the results of
our method using three images from left to right, and the projection patterns, the results of the scenes 1, 2, and 3 from top to
bottom. We applied the gamma correction to those images only for display purpose.

latter uses two images. In particular, we can see the
artifacts around the boundaries in the black-and-white
patterns in the results of Nayar et al.

Table1 summarizes the quantitative comparison in
terms of the PSNR and SSIM; the higher, the better.
We can also see that our proposed method (N = 1)
and Duan et al. (N = 1) work better than Nayar et
al. (N = 2), even though the formers use only a sin-
gle image and the latter uses two images. Further
more, we can see that our method performs better
than Duan et al.. This shows the effectiveness of our
method, in particular the data-driven projection pat-
tern and the end-to-end optimization of the imaging
module and the separation module. We can also see
that our method performs better as the number of im-
ages increases (N = 3).

5 Conclusion and Future Work

We proposed a data-driven approach for direct-
global separation with the optimal projection patterns.
Specifically, we show that the projection patterns can
be represented by (1 × 1) convolution kernels, and
then learn not only the separation module but also
the imaging module, i.e. the projection patterns at the
same time in an end-to-end manner via CNN frame-
work. We conducted a number of experiments using
real images captured with a projector-camera system,

and confirmed the effectiveness of our method. The
extension of our approach from static scenes to dy-
namic scenes by taking motion blurs (Achar et al.,
2013) into consideration is one of the future directions
of our study.
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