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Abstract. Photometric stereo is a technique for estimating normals of
an object surface from its images taken under different light source di-
rections. In general, photometric stereo suffers from shadows, because
almost no information on surface normals is available from shadowed pix-
els. In this paper, we propose an illumination planning for shadow-robust
Lambertian photometric stereo; it optimizes the light source directions
adaptively for an object of interest, because cast shadows depend on the
entire shape of the object. More specifically, our proposed method iter-
atively adds the optimal light source for surface normal estimation by
taking the visibility and linear independence of light source directions
into consideration on the basis of the previously captured images of the
object. We implemented our illumination planning with a programmable
light source in an online manner, and achieve shadow-robust surface nor-
mal estimation from a small number of images.

Keywords: photometric stereo · illumination planning · attached shadow
· cast shadow · visibility

1 Introduction

Photometric stereo is a technique for estimating surface normals of an object of
interest from its images taken from a fixed viewpoint but under different light
source directions. The classical photometric stereo [18, 15] assumes the Lambert
model and known light sources, and then estimates surface normals from at
least three images. The extension of the classical photometric stereo to non-
Lambertian surfaces, unknown light sources, and so on is still one of the most
actively studied topics in computer vision [1, 14].

In this paper, we focus on shadows, i.e. another aspect of the extension of the
classical photometric stereo, and propose photometric stereo robust to shadows.
In general, shadows are classified into attached shadows and cast shadows; at-
tached shadow is local effect and occurs when the angle between a surface normal
and a light source direction is obtuse, but cast shadow is global effect and occurs
when a light source is blocked by another part of an object surface. Because
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almost no information on surface normals is available from shadowed pixels 1,
we need to illuminate an object surface by using appropriate light sources so
that each pixel on the surface is sufficiently illuminated.

Optimizing light sources, so-called illumination planning [11] is studied also
in the context of photometric stereo. Drbohlav and Chantler [6] address the
optimal light source configurations for the Lambertian photometric stereo on
the basis of the noise propagation analysis. For example, they show that, when
the number of light sources is three, the three light sources should be placed so
that those directions are orthogonal to each other. Unfortunately, however, their
analysis does not take shadows into consideration, although attached shadows
occur even on convex objects in practice. More importantly, they find the optimal
light source directions a priori independent of the shape of an object. Actually,
cast shadows occur on non-convex objects depending on the entire shapes of the
objects.

Accordingly, we propose an online illumination planning for shadow-robust
Lambertian photometric stereo. Our proposed method estimates surface nor-
mals of an object of interest by iteratively adding a novel image of the object
taken under the optimal light source direction. More specifically, we take the
visibility and linear independence of light source directions into consideration,
and propose a method for optimizing the light source direction adaptively for an
object of interest on the basis of the previously captured images of the object.
We implemented our illumination planning by using a Liquid Crystal Display
(LCD) as a programmable light source, and confirmed the effectiveness of our
method through a number of experiments using synthetic and real images.

The main contributions of this study are twofold. First, we propose a novel
illumination planning for shadow-robust Lambertian photometric stereo. Our
proposed method iteratively adds the optimal light source according to an object
of interest on the basis of the previous observations of the object. Second, we
implemented our illumination planning with a programmable light source in an
online manner, and achieve shadow-robust surface normal estimation from a
small number of images.

2 Related Work

Conventional Approach: Outlier Removal
Both attached shadows and cast shadows are considered as outliers, because

the pixel values in those shadows deviate from the Lambert model. Therefore, a
number of methods are proposed for detecting shadows in the images for pho-
tometric stereo and removing them as outliers from surface normal estimation.
For example, the shadows in photometric stereo images are detected by select-
ing the optimal three light sources out of four [2], by using RANdom SAmple
Consensus (RANSAC) [13, 10, 16], graph cut [3], and low-rank and sparse de-
composition [19, 8]

1 It is known that surface normals can be recovered from attached shadows if a large
number of images taken under varying light source directions are given [12].
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Our objective is to achieve shadow-robust photometric stereo too. In contrast
to the above methods, however, our focus is not on detecting shadows but on
illuminating an object surface in the context of active illumination. Specifically,
we illuminate an object surface so that each pixel is sufficiently illuminated for
surface normal estimation.
Learning-Based Approach

The learning-based approach is getting more common also in photometric
stereo. There are a number of learning-based methods for non-Lambertian pho-
tometric stereo and uncalibrated photometric stereo [5, 17, 4, 20]. It is certain
that the learning-based approach is suitable for dealing with non-Lambertian
BRDFs because the reflectance is local effect. Unfortunately, however, cast shad-
ows depend on the entire shape of an object, and then they are global effects.
Therefore, efficiently handling cast shadows is difficult for the learning-based
approach; a huge amount of training data is required in general.

Recently, Ikehata [7] and Li et al. [9] propose methods for efficiently handling
cast shadows in the learning-based approach by incorporating cast shadows into
so-called observation map. Similar to the conventional approach, their objective
is to remove the impact of cast shadows from surface normal estimation implic-
itly. On the other hand, our focus is on illuminating an object surface so that
sufficient information is available for surface normal estimation.
Illumination Planning

Drbohlav and Chantler [6] address the optimal light source configurations
for the Lambertian photometric stereo. Specifically, they reveal the relationship
between the noises in pixel values and the expected errors of estimated surface
normals on the basis of noise propagation analysis, and derive the optimal light
source configurations for given numbers of light sources. Unfortunately, however,
their analysis does not take shadows into consideration and finds the optimal
light source directions a priori independent of the shape of an object.

In contrast to their method, we take account of shadows for optimizing
light source directions in the Lambertian photometric stereo. In particular, our
method optimizes the light source directions adaptively for an object of interest
on the basis of the previously captured images of the object in an online manner,
because cast shadows are global effects depending on the entire shapes of the
objects.

3 Proposed Method

3.1 Overview

Our proposed method aims to illuminate an object surface from the optimal light
source directions so that each pixel on the surface is sufficiently illuminated. To
this end, our method iteratively finds the optimal light source direction on the
basis of the previously captured images of the object, and then capture a novel
image of the object under the optimal light source direction. The pipeline of our
method is as follows; our proposed illumination planning
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1. randomly selects three initial light source directions, and then captures three
images of the object under each of those light source directions,

2. finds out the pixel with the worst accuracy in surface normal estimation,
3. finds out the optimal light source direction for improving the accuracy

of surface normal estimation at the worst pixel, and then captures a novel
image under the optimal light source direction,

4. repeats 2 and 3 a number of times,

and finally estimates surface normals from all of the captured images.
In Section 3.2, we describe how to estimate surface normals from images with

shadows. Then, we explain the way of finding the worst pixel and the optimal
light source direction in Sections 3.3 and 3.4 respectively.

3.2 Estimating Surface Normals from Images with Shadows

Here, we explicitly formulate the Lambertian photometric stereo from images
with shadows. Let us denote the pixel value at the p-th pixel (p = 1, 2, 3, ..., P )
on an object surface under the l-th light source direction (l = 1, 2, 3, ..., L) by
ipl. According to the Lambert model, the pixel value ipl is represented by

ipl = vpls
′
l
�
n′

p. (1)

Here, s′l is the product of the direction sl and intensity of the l-th light source,
and n′

p is the product of the surface normal np and albedo at the p-th pixel.
Both sl and np are unit vectors. We denote the visibility of the p-th pixel from
the l-th light source direction by vpl; vpl = 0 if the p-th pixel is in attached
shadow or cast shadow and vpl = 1 otherwise2.

We can rewrite eq.(1) at the p-th surface point under the L different light
source directions by using matrices as⎛

⎜⎜⎜⎝
ip1
ip2
...

ipL

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

vp1s
′
1
�

vp2s
′
2
�

...

vpLs
′
L
�

⎞
⎟⎟⎟⎟⎠n′

p =

⎛
⎜⎜⎜⎝

vp1 0 · · · 0
0 vp2 · · · 0

. . .

0 0 · · · vpL

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

s′1
�

s′2
�

...

s′L
�

⎞
⎟⎟⎟⎟⎠n′

p, (2)

ipL = VpLSLn
′
p. (3)

Therefore, we can compute the scaled surface normal n′
p by using the pseudo-

inverse matrix (VpLSL)
† as

n′
p = (VpLSL)

†ipL = {(VpLSL)
�(VpLSL)}−1(VpLSL)

�ipL, (4)

if {(VpLSL)
�(VpLSL)} is a regular matrix. Note that the surface normal np

with unit length is given by np = n′
p/|n′

p|. When VpL is the L × L identity
matrix, the estimation of the surface normal in eq.(4) results in the estimation
from images without shadows.

2 The visibility is often used for representing cast shadows, but we use it for repre-
senting both attached shadows and cast shadows in this paper.
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3.3 Finding Pixel with Worst Accuracy

In a similar manner to Drbohlav and Chantler [6], we can estimate the accuracy
of the estimated surface normal via noise propagation analysis. Let us denote the
estimated and ground truth scaled surface normals by n′

p and n̄′
p respectively.

Then, we study the variance-covariance matrix Σ of the surface normal defined
by

Σ = E
[
(n′

p − n̄′
p)(n

′
p − n̄′

p)
�] , (5)

where E[ ] stands for the expectation value.
Suppose that the observed pixel value ĩpl is contaminated by additive noise

δpl and deviates from the ideal pixel value ipl
3 as

ĩpl = ipl + δpl, (6)

we can derive

Σ = E
[{(VpLSL)

†δpL}{(VpLSL)
†δpL)}�

]
= σ2(VpLSL)

†{(VpLSL)
†}�

= σ2{(VpLSL)
�(VpLSL)}−�. (7)

Here, δpL = (δp1, δp2, δp3, · · · , δpL)�, and we assume independent and identically
distributed noises whose mean and variance are 0 and σ2 respectively. Since the
Mean Square Error (MSE) is proportional to the trace of the variance-covariance
matrix, we obtain the MSE of the estimated surface normal as

MSE ∝ Tr
[{(VpLSL)

�(VpLSL)}−1
]
. (8)

Therefore, our proposed method finds out the pixel p̂ with the worst accuracy
in surface normal estimation as

p̂ = argmax
p

Tr
[{(VpLSL)

�(VpLSL)}−1
]
. (9)

Note that the MSE depends on the surface points via the visibility matrix VpL
4.

Intuitively, the MSE is larger for the pixel that is illuminated by a smaller number
of light sources with smaller linear independence. When VpL is the L×L identity
matrix, i.e. when we do not take account of shadows, the MSE results in that
of Drbohlav and Chantler [6].

3.4 Finding Optimal Light Source Direction

Suppose that the L images of an object are captured and the p̂-th pixel is
selected as the pixel with the worst accuracy according to eq.(9). Our proposed

3 Note that not the noise δpl but the visibility vpl is used for representing shadows as
shown in eq.(1).

4 When multiple pixels have the same visibility matrix and therefore have the same
MSE, we randomly select one of the pixels as the worst pixel.
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method finds the optimal light source direction, i.e. the (L + 1)-th light source
direction under which a novel image of the object is captured for improving
the accuracy of the estimated surface normal at the p̂-th pixel. Our clue to
the optimal light source direction is the visibility and linear independence; the
optimal light source direction should be visible from the p̂-th pixel and have
the largest linear independence from the previous light source directions with
vp̂l = 1.

As mentioned in Section 1, our implementation makes use of an LCD as a
programmable light source. Then, we represent the direction of a light source
by the 2-D coordinate system of the display. We assume that our setup is geo-
metrically calibrated in advance, and represent a light source by using the 2-D
coordinate (x, y) of the display and the 3-D vector s(x, y) interchangeably. Our
proposed method maximizes the cost function C(x, y) defined as

C(x, y) = Cvis(x, y)× Clin(x, y) (10)

with respect to (x, y). Here, Cvis(x, y) and Clin(x, y) are the cost functions for
the visibility and linear independence of the light source s(x, y) respectively.

The cost function for the visibility has larger value if the light source direction
(x, y) is likely visible from the p̂-th pixel and vice versa. More specifically, if
the direction (xl, yl) of the l-th light source is visible from the p̂-th pixel, its
neighboring directions are also considered to be visible. On the other hand, if
the direction of the l-th light source is invisible, its neighboring directions are
also considered to be invisible. Therefore, we define the cost function for the
visibility by the linear combination of the Gaussian distributions as

Cvis(x, y) =
1

2πw2

[
e−

(x−xc)
2+(y−yc)

2

2w2 +

L∑
l=1

(2vp̂l − 1)e−
(x−xl)

2+(y−yl)
2

2w2

]
. (11)

Here, the first term corresponds to the direction of a camera (xc, yc), and the
second term corresponds to the previous L light sources. The coefficient (2vp̂l −
1) = 1 for visible light sources from the p̂-th pixel, and (2vp̂l − 1) = −1 for
invisible light sources. Because we consider an object surface visible from the
camera, the coefficient of the first term is 1. Since the cost function for the
visibility is considered as a likelihood, we adopt the upper and lower limits; we
set Cvis(x, y) = 1 if Cvis(x, y) > 1, and Cvis(x, y) = −1 if Cvis(x, y) < −15.

The cost function for the linear independence has larger value if the light
source direction (x, y) has larger linear independence from the previous light
source directions with vp̂l = 1. Therefore, we compute the principal directions
of those previous light sources, and define the cost function for the linear inde-
pendence as

Clin(x, y) = max[s�mins(x, y),−s�mins(x, y)]. (12)

Here, we denote the 3-D eigenvector corresponding to the smallest eigenvalue of
(Vp̂LSL) by smin, and max[ ] returns the maximum argument.

5 We set the lower limit not to 0 but to 1 so that the gradient of the cost function
C(x, y) does not vanish for gradient-based optimization.
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Fig. 1. Two objects used in the experiments with synthetic images: (a) a slit and (b)
a wave. The camera and display are located above the objects.

Since the cost function in eq.(10) is nonlinear with respect to (x, y), the
optimization depends on the initial conditions. In our current implementation,
we used the interior point algorithm (fmincon in MATLAB), and tested multiple
random initial conditions and then selected the best solution that maximizes the
cost function.

4 Experiments

To confirm the effectiveness of our proposed method, we conducted a number
of experiments using both synthetic and real images. In the experiments using
synthetic images, we assumed a similar setup to our prototype system for the
experiments using real images shown in Fig. 8. We assumed that the visibility
vpl is 0 if the pixel value ipl is smaller than a threshold depending on the noise
level of images, and vpl is 1 otherwise.

We changed the standard deviation w of the Gaussian distributions in eq.(11)
as w = w0/

√
L so that the cost function for the visibility can represent finer

details as the number of light sources L increases. As shown in Fig. 8, we used
an ultra wide display and normalized the scale of the coordinate system as the
height of the display is 1, i.e. the range of x is [0, 1], and we empirically set
w0 = 0.7.

4.1 Synthetic Images

Visibility
First, we show how the cost function for the visibility behaves actually. We

used a slit shown in Fig. 1(a) as an object of interest. For the sake of simplicity,
we investigated the visibility at a fixed point on the lower plane of the object, and
the light source directions are randomly selected instead of using our illumination
planning.

Fig. 2 visualizes the cost function for the visibility in the display domain
(x, y): (a) the ground truth and the visibilities when the numbers of light sources
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precision:
65.35%

precision:
75.08%

precision:
93.45%

Fig. 2. The cost function for the visibility in the display domain (x, y): (a) the ground
truth and the visibilities when the numbers of light sources L are (b) 10, (c) 30, and
(d) 100 respectively.

(a) (b)

(c) (d)

Fig. 3. The cost function for the linear independence for different sets of 10 light source
directions.

L are (b) 10, (c) 30, and (d) 100 respectively. Here, the visibility vpl is 1/0 at
white/black pixels in (a) the ground truth, and Cvis is 1/-1 at white/black pixels
from (b) to (d). The selected light source directions are superimposed in those
images: orange/light blue points correspond to vpl = 1/0 respectively. We can
see that the cost function for the visibility gets closer to the ground truth as
the number of light sources increases. In addition, we binarize the cost function
for the visibility to 1/0 when Cvis ≥ 0/ < 0, and computed the precision of the
visibility, i.e. the fraction of the light source directions with vpl = 1 among those
with Cvis ≥ 0, when L =10, 30, and 100. We can see quantitatively that our
cost function for the visibility works well; the precision gets closer to 100% as
the number of light sources increases.

Linear Independence
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truth

L=5
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Fig. 4. The qualitative results of the slit when σ = 0.02: the ground truth surface
normals and (a) the estimated surface normals, (b) the errors of the surface normals,
and (c) the selected light sources by using our proposed illumination planning, and (d)
(e) (f) those of the random selection when L = 5, 10, and 15.

Second, we show how the cost function for the linear independence behaves
actually. For the sake of simplicity, we investigated the linear independence by
using dummy data. More specifically, we randomly selected 10 light source di-
rections and assumed that a surface point of attention is shadowed under some
of them.

Fig. 3 visualizes the cost function for the linear independence for different
sets of 10 light source directions. Here, the linear independence Clin is 1/0 at
white/black pixels in the images. The selected light source directions are su-
perimposed in those images: orange/light blue points correspond to vpl = 1/0
respectively. We can see that the cost function for the linear independence takes
larger values at the orthogonal directions to the visible light source directions
illuminating the surface point of attention as expected.
Surface Normal Estimation

Third, we compare the performance of our proposed illumination planning
with the random selection of light source directions for surface normal estimation.
We tested two objects: a slit and a wave in Fig. 1. The camera and display are
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Fig. 5. The qualitative results of the wave when σ = 0.02: the ground truth surface
normals and (a) the estimated surface normals, (b) the errors of the surface normals,
and (c) the selected light sources by using our proposed illumination planning, and (d)
(e) (f) those of the random selection when L = 5, 10, and 15.

located above the objects. In order to investigate the robustness to noises in
pixel values, we added zero-mean Gaussian noises, whose standard deviations
σ are 0.01, 0.02, and 0.04 for pixel values normalized to [0, 1], to the synthetic
images.

Fig. 4 shows the qualitative results of the slit when σ = 0.02: the ground
truth surface normals and (a) the estimated surface normals, (b) the errors of
the surface normals, and (c) the selected light sources by using our proposed
illumination planning, and (d) (e) (f) those of the random selection when L = 5,
10, and 15. The whiter the pixels in (b) and (e) are, the larger the errors in surface
normal estimation are. We can see that our illumination planning works better
than the random selection; our illumination planning achieves better accuracy
by using smaller number of light sources than the random selection. We can also
see that the light source directions selected by our illumination planning are
different from those of the random selection. Here, the light blue points stand
for the initial three light source directions, and the orange points stand for the
iteratively added light source directions.
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Fig. 6. The quantitative results of the slit; the angular error in degree vs. the number
of light sources under various noise levels: (a) our proposed illumination planing and
(b) the random selection of light source directions.
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Fig. 7. The quantitative results of the wave; the angular error in degree vs. the number
of light sources under various noise levels: (a) our proposed illumination planing and
(b) the random selection of light source directions.

Fig. 6 shows the quantitative results of the slit; the angular error in degree
vs. the number of light sources under various noise levels: (a) our proposed
illumination planing and (b) the random selection of light source directions.
We can see that the angular errors of our illumination planning converges to
smaller values for smaller number of light sources than the random selection.
Those results quantitatively show that our illumination planning works better
than the random selection.

The qualitative and quantitative results of the wave are shown in Fig. 5 and
Fig. 7 respectively. We can see that we obtain the similar results to those of
the slit. Those results for the wave also support that our proposed illumination
planning works better than the random selection. It is interesting that the light
source directions selected by our illumination planning for the slit and the wave
are different from each other. This is because our method finds out the optimal
light source directions depending on the shape of an object of interest. Actually,
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camera

object

LCD

Fig. 8. Our prototype system for the experiments using real images.

(a) (b) (c) (d) (e)

Fig. 9. The qualitative results using real images: (a) the images of target objects under
ambient light, the estimated surface normals when (b) L = 3, (c) 10, and (d) 20, and
(e) the selected optimal light source directions: light blue points (L = 1 to 3) and
orange points (L = 4 to 20).

the optimal light source directions for the wave mainly distribute around the
center column of the display in order to illuminate the deep valleys of the wave.

4.2 Real Images

Fig. 8 shows our prototype system for the experiments using real images. It
consists of an ultra wide LCD 439P9H1/11 from PHILIPS and a polarimetric
camera BFS-U3-51S5P-C from FLIR. We assume sufficiently smaller objects
than the distance between the display and the objects, and consider the small
white spots displayed on the LCD as distant light sources. The directions and
intensities of those light sources are calibrated in advance by using the images
of a mirror sphere and a diffuse reflector.
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Our proposed online illumination planning, consisting of controlling the LCD
and camera, separating reflection components, finding the worst pixel, and find-
ing the optimal light source, is implemented by using MATLAB. We separated
the diffuse and specular reflection components in the captured images on the ba-
sis of polarization, and used the former for the Lambertian photometric stereo.
The optimization of the cost function in eq.(10) takes about 0.05 sec for a sin-
gle initial condition. Therefore, we can test 80 initial conditions during typical
exposure time of 4 sec.

We qualitatively show how our proposed illumination planning behaves for
real images, since the ground truth surface normals are unknown for real objects.
We tested three objects; a toy bench made of plastics, a milk pitcher and a cup
made of ceramic. Fig. 9 shows (a) the images of those objects under ambient
light, the estimated surface normals when (b) L = 3, (c) 10, and (d) 20, and (e)
the selected optimal light source directions: light blue points (L = 1 to 3) and
orange points (L = 4 to 20). Here, the orange points in (a) the images of the
objects stand for the selected worst pixels from L = 4 to 20.

The estimated surface normals qualitatively show that the accuracy signifi-
cantly improves as the number of light sources increases from (b) L = 3 to (d)
20. Interestingly, we can see that (a) the worst pixels are often selected from
non-convex areas, and (e) the optimal light source directions are selected so that
they can illuminate those pixels. Those results demonstrate that our proposed
illumination planning behaves as expected, and estimates surface normals from
a small number of images.

5 Conclusion and Future Work

We proposed an illumination planning for shadow-robust Lambertian photo-
metric stereo. Our proposed illumination planning takes the visibility and linear
independence of light source directions into consideration, and optimizes the
light source directions adaptively for an object of interest. We implemented our
illumination planning with a programmable light source in an online manner,
and achieve shadow-robust surface normal estimation from a small number of
images.

One direction of our future study is to incorporate interreflections into our
proposed illumination planning, because they are often observed on non-convex
surfaces but our illumination planning does not take account of them. The other
direction is the integration with view planning; it optimizes both the light source
directions and the viewing directions for modeling an object of interest.
Acknowledgement: This work was supported by JSPS KAKENHI Grant Num-
ber JP20H00612.
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