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Abstract. Inverse lighting is a technique for estimating the illumina-
tion distribution of a scene from a single image. Conventionally, inverse
lighting assumes either a linear radiometric response function or a convex
scene without cast shadows. Unfortunately, however, consumer cameras
usually have unknown and nonlinear radiometric response functions, and
then the existing methods do not work well for images such as Inter-
net photos taken by using those cameras. Moreover, it is known that
the high-frequency components of an illumination distribution cannot
be recovered from diffuse reflection components without cast shadows.
In this paper, we propose a method for jointly estimating both an il-
lumination distribution and a radiometric response function from cast
shadows. Specifically, our proposed method represents the illumination
distribution and the response function by using Haar wavelets with the
sparseness constraint and polynomials respectively, and then estimates
their coefficients. We conducted a number of experiments by using both
synthetic and real images, and confirmed that our method works better
than the existing methods. In addition, we showed that masking pix-
els near edges makes the joint estimation robust for real images with
approximate geometry.

Keywords: Inverse Lighting, Cast Shadows, Radiometric Response Func-
tion, Haar Wavelets, Spherical Harmonics

1 INTRODUCTION

The appearance of an object depends on the shape and reflectance of the object
as well as the illumination distribution of a scene. Inverse lighting [6] is a tech-
nique for estimating the illumination distribution of a scene from a single input
image with known shape and reflectance. Illumination recovery is important for
applications to Augmented Reality (AR) and Mixed Reality (MR); it enables
us to superimpose photometrically consistent synthetic objects onto real scenes
and real images [1, 11]. Inverse lighting is important also as a building block of
multi-view inverse rendering [15, 13, 16, 4]; it jointly estimates the detailed shape,
reflectance, and illumination from multiple images such as Internet photos.
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Conventionally, inverse lighting assumes either a linear radiometric response
function or a convex scene. The former means that a pixel value is proportional
to a radiance value. Unfortunately, however, consumer cameras usually have un-
known and nonlinear radiometric response functions [3]. Therefore, the existing
methods assuming a linear response function [6, 10, 12, 9] do not work well for im-
ages, in particular Internet photos, taken by using those cameras with unknown
and nonlinear radiometric response functions.

The latter means that there are no shadows cast by one object onto another
in the scene. It is known that the high-frequency components of an illumination
distribution cannot be recovered from diffuse reflection components [10], but can
be recovered from cast shadows [9]. Ohta and Okabe [8] propose a method for
jointly estimating both the illumination distribution of a scene and the radio-
metric response function of a camera from diffuse reflection components, and
therefore their method can recover only the low-frequency components of an il-
lumination distribution. In addition, they tested their method only on synthetic
images with accurate geometry, and then its effectiveness on real images with
approximate geometry is questionable.

To cope with those limitations, we propose a method for jointly estimating
both the illumination distribution of a scene and the radiometric response func-
tion of a camera from cast shadows. Specifically, our proposed method represents
the illumination distribution and the response function by using Haar wavelets
with the sparseness constraint and polynomials respectively, and then estimates
their coefficients. We conducted a number of experiments using both synthetic
and real images, and confirmed that our method works better than the exist-
ing methods. In addition, we empirically show that masking the pixels near the
edges in an input image makes the joint estimation robust for real images with
approximate geometry.

The main contributions of this study are twofold. First, we propose a method
for jointly estimating both an illumination distribution and a radiometric re-
sponse function from cast shadows; it enables us to estimate the high-frequency
components of the illumination distribution from a single input image captured
by using a consumer camera with an unknown and nonlinear response func-
tion. Second, through the experiments using both synthetic and real images,
we experimentally confirmed that our method works better than the existing
methods. Specifically, we showed the effectiveness of the joint estimation and
the use of Haar wavelets with the sparseness constraint. In addition, we showed
that the joint estimation from real images with approximate geometry becomes
robust when the pixels near the edges in an input image are removed from the
estimation.

2 PROPOSED METHOD

In this section, we propose a method for jointly estimating both the illumination
distribution of a scene and the radiometric response function of a camera from a
single input image. Our proposed method assumes that the shape and reflectance
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of a scene are known, and the scene is illuminated by distant light sources in a
similar manner to the conventional inverse lighting. We discuss how to make the
joint estimation robust for real images with approximate geometry.

2.1 Illumination Distribution

According to the above distant illumination assumption, we describe the inten-
sity of the incident light ray from the direction (θ, ϕ) to a scene as L(θ, ϕ). Here,
θ and ϕ are the zenith and azimuth angles in the spherical coordinate system
centered at the scene. Hereafter, we call L(θ, ϕ) the illumination distribution of
the scene.

We can represent an illumination distribution as a linear combination of basis
functions. It is known that low-degree spherical harmonics can be used for the
basis functions of an illumination distribution when a scene of interest is convex
and obeys the Lambert model [10]. On the other hand, it is known that a large
number of spherical harmonics are required when a scene is not convex and cast
shadows are observed [14].

Ng et al. [7] show that an illumination distribution can approximately be
represented by using a small number of Haar wavelets sparsely. Okabe et al. [9]
make use of Haar wavelets for inverse lighting from cast shadows, and show
that Haar wavelets work better than spherical harmonics for the basis functions
of an illumination distribution. Therefore, our proposed method represents an
illumination distribution by using Haar wavelets as

L(θ, ϕ) =

N∑
n=1

αnHn(θ, ϕ), (1)

where Hn(θ, ϕ) and αn are the n-th basis function of Haar wavelets and the
corresponding n-th coefficient.

Based on the assumption of known shape and reflectance, we can synthesize
the basis images; the n-th basis image is the image of the scene when the illumi-
nation distribution is equal to the n-th basis function of Haar wavelets Hn(θ, ϕ).
We denote the p-th (p = 1, 2, 3, ..., P ) pixel value in the n-th basis image by Rnp.
According to the superposition principle, the p-th pixel value of a single input
image Ip (p = 1, 2, 3, ..., P ) is described as

Ip =

N∑
n=1

αnRnp. (2)

2.2 Radiometric Response Function

The radiance values of a scene are converted to pixel values via in-camera pro-
cessing. As mentioned in Section 1, the relationship between radiance values and
pixel values is described by a radiometric response function. Consumer cameras
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often apply nonlinear radiometric response functions for converting radiance val-
ues to pixel values in order to improve perceived image quality [3]. In general,
the response function depends on cameras themselves as well as camera settings.

Let us denote a response function by f , and assume that a radiance value
I is converted to a pixel value I ′ by using the response function as I ′ = f(I).
Since the response function is strictly increasing, there exists the inverse of f , i.e.
an inverse response function g. The inverse response function converts a pixel
value I ′ to a radiance value I as I = g(I ′), and therefore has 255 degrees of
freedom for 8-bit images. Such a high degree of freedom could make the joint
estimation of an illumination distribution and a response function from a single
image intractable.

Accordingly, we make use of the polynomial representation for a radiometric
response function [5]. Specifically, our proposed method represents the inverse
response function g(I ′p) as

Ip = g(I ′p) = I ′p + I ′p(I
′
p − 1)

M∑
m=1

βmI ′M−m
p , (3)

where (M + 1) is the degree of polynomial and βm is the m-th coefficient. Both
the radiance values and pixel values are normalized so that 0 ≤ Ip ≤ 1 and
0 ≤ I ′p ≤ 1. The polynomial representation in eq.(3) automatically satisfies the
boundary conditions: g(0) = 0 and g(1) = 1. Since the inverse response function
is also strictly increasing, the coefficients βm have to satisfy

g

(
I ′

255

)
< g

(
I ′ + 1

255

)
, (4)

where I ′ = 0, 1, 2, ..., 254 for 8-bit images.

2.3 Joint Estimation

Substituting eq.(3) into the left-hand side of eq.(2), we obtain

I ′p + I ′p(I
′
p − 1)

M∑
m=1

βmI ′M−m
p =

N∑
n=1

αnRnp, (5)

i.e. a single constraint on the coefficients of the illumination distribution αn and
those of the response function βm per pixel. Therefore, our proposed method es-
timates the coefficients of the illumination distribution and those of the response
function by minimizing the following cost function

1

P

P∑
p=1

[
I ′p + I ′p(I

′
p − 1)

M∑
m=1

βmI ′M−m
p −

N∑
n=1

αnRnp

]2

+
w

N

N∑
n=1

|αn|1 (6)

with respect to αn and βm subject to the strictly increasing constraint in eq.(4)
and the non-negativity constraint on the illumination distribution 1. Here, the

1 The non-negativity constraint is represented by the linear constraints on the coeffi-
cients of the illumination distribution αn.
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first term measures the discrepancy between the radiance values predicted by
the inverse response function and the illumination distribution, and the second
term measures the sparseness of the coefficients for the illumination distribution.
Once the coefficients of the illumination distribution αn and those of the response
function βm are obtained, we can compute the illumination distribution and the
response function by substituting them into eq.(1) and eq.(3).

2.4 Joint Estimation with Approximate Geometry

The performance of inverse lighting depends on the accuracy of the given ge-
ometry of a scene. Unfortunately, however, inverse lighting is often used with
approximate geometry; it is used for a previously captured image in a passive
manner where the geometry is given manually [12], and for a building block of
multi-view inverse rendering where detailed shape is unknown and to be esti-
mated [15, 13, 16, 4].

Accordingly, in order to make the joint estimation with approximate geome-
try robust against inaccurate geometry, we propose to mask the pixels near the
edges in an input image out of the estimation. The example of the edges and
mask are shown in Fig. 5. The reason why the pixels near the edges are removed
is that the edges correspond to the discontinuity in depths and surface normals
and the sharp shadow boundaries caused by the occluding objects, and therefore
their pixel values computed from the given geometry significantly change due to
slight noises in the geometry.

3 EXPERIMENTS

To confirm the effectiveness of our proposed method, we conducted qualitative
and quantitative evaluation by using both synthetic and real images.

3.1 Comparison Using Synthetic Images

We compared the following four methods.

– HW + RF (Our Proposed Method) jointly estimates the illumination
distribution of a scene and the inverse response function of a camera from
a single input image. Haar wavelets are used for the basis functions of the
illumination distribution.

– HW assumes that the inverse response function is linear and estimates only
the illumination distribution by using Haar wavelets in a similar manner to
the existing technique [9].

– L-SH + RF [8] jointly estimates the illumination distribution and the
inverse response function. It assumes a convex scene, and therefore low-
degree spherical harmonics up to the second degree are used for the basis
functions of the illumination distribution.

– H-SH + RF jointly estimates the illumination distribution and the inverse
response function. High-degree spherical harmonics are used.
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(a) (b) (c) (d)

Fig. 1. The images of four scenes synthesized by using the HDR radiance maps. Each
one is used as input for inverse lighting.
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(h)

HW + RF HW + RF HW L-SH + RF H-SH + RF
w/o mask w/o mask w/o mask w/o maskwith mask

Fig. 2. The results of the first scene: (a) the ground truth of the illumination distri-
bution, and those estimated by using (b) HW + RF w/o mask, (c) HW + RF with
mask, (d) HW, (e) L-SH + RF, and (f) H-SH + RF respectively, and the corresponding
inverse response functions estimated by using (g) HW + RF w/o mask, (h) HW + RF
with mask, (i) L-SH + RF, and (j) H-SH + RF respectively, where the ground truth
(dotted line) is superimposed.

For HW + RF and HW, the illumination distribution is represented by the
Vertical Cross Cube Format (cube map) whose resolution is N = 1280 (=
256 × 5). For L-SH + RF and H-SH + RF, the degrees of spherical harmon-
ics are 2 and 35, i.e. N = 9 and N = 1296 respectively. We empirically set the
degree of the polynomial to (M + 1) = 5. For HW + RF and HW, we used
CVX [2] for optimization, and set the weight, which controls the balance be-
tween the data term and the sparseness term in eq.(6), to w = 10−2. We show
how the performance of our method depends on the value of the weight w later
in Subsection 3.3.

As shown in Fig. 1, we tested four images synthesized by using the HDR
radiance maps [1]. In Fig. 1 (a), two polyhedrons on a plane 2 are illuminated
by the radiance map of “Galileo’s Tomb”, and its radiance values are converted
by a convex upward inverse response function. In Fig. 1 (b), (c), and (d), one

2 The geometry of the scene is the same as that of the real images in the next subsec-
tion.
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(a) (b) (d) (e)(c) (f)

HW + RF HW + RF HW L-SH + RF H-SH + RF
w/o mask w/o mask w/o mask w/o maskwith mask

Fig. 3. The relighting images by using (a) the ground truth of the illumination distri-
bution, and those estimated by using (b) HW + RF w/o mask, (c) HW + RF with
mask, (d) HW, (e) L-SH + RF, and (f) H-SH + RF respectively.

Table 1. The RMSEs of the relighting images in Fig. 3 and those of the estimated
inverse response function in Fig. 2 for the four scenes shown in Fig. 1 (a), (b), (c), and
(d).

method mask
relighting image response function

(a) (b) (c) (d) (a) (b) (c) (d)

HW + RF w/o 0.056 0.055 0.051 0.077 0.077 0.078 0.067 0.019
HW + RF w 0.031 0.101 0.063 0.079 0.070 0.091 0.110 0.021

HW w/o 0.233 0.164 0.094 0.186 - - - -
L-SH + RF w/o 0.176 0.177 0.048 0.085 0.186 0.247 0.118 0.034
H-SH + RF w/o 0.093 0.151 0.097 0.422 0.121 0.580 0.210 0.176

of the conditions is different from (a); (b) a convex downward inverse response
function, (c) the radiance map of “Eucalyptus Grove”, and (d) a sphere on a
plane are used instead respectively. We added zero-mean Gaussian noises, whose
standard deviation is σ = 0.01 for pixel values normalized to [0, 1], to those
synthetic images.

Fig. 2 shows the results of the first scene: (a) the ground truth of the illu-
mination distribution, and those estimated by using (b) HW + RF w/o mask,
(c) HW + RF with mask, (d) HW, (e) L-SH + RF, and (f) H-SH + RF re-
spectively. We show the corresponding inverse response functions estimated by
using HW + RF w/o mask, HW + RF with mask, L-SH + RF, and H-SH +
RF in (g), (h), (i), and (j) respectively, where the ground truth (dotted line) is
superimposed on each result. In order to evaluate the effectiveness of the esti-
mated illumination distribution for applications to AR and MR, we synthesized
the relighting images of a scene different from that of the input image. Fig. 3
shows the relighting images by using (a) the ground truth of the illumination
distribution, and those estimated by using (b) HW + RF w/o mask, (c) HW
+ RF with mask, (d) HW, (e) L-SH + RF, and (f) H-SH + RF respectively.
Table 1 summarizes the RMSEs of the relighting images in Fig. 3 and those of
the estimated inverse response function in Fig. 2 for the four scenes shown in
Fig. 1 (a), (b), (c), and (d).
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(a) (b)

Fig. 4. The real input images of a scene captured with different response functions.

(a) (b)

Fig. 5. The edges and mask for the real image in Fig. 4 (a).

Effectiveness of Mask:

Comparing the results of HW + RF, i.e. our proposed method, without and
with mask in Figs. 2, 3, and Table 1, we can see that the proposed method
without mask works better than that with mask. This is because the geometry
of a scene is accurate for synthetic images, and therefore the use of the mask
would lose the clues for estimating the high-frequency details of illumination
distributions. Hence, we did not use the mask for evaluating the performance of
the other methods: HW, L-SH + RF, and H-SH + RF. It is worth noting that
the degradation of the performance due to the mask is relatively small.

Effectiveness of Joint Estimation:

Comparing the results of HW + RF, i.e. our proposed method with those of
HW in Figs. 2, 3, and Table 1, we can see that our method works better than
HW both qualitatively and quantitatively. In particular, the brightness of the
relighting image in Fig. 3 (d) is distorted due to the assumption of a linear
inverse response function. Those results show that the effectiveness of the joint
estimation of an illumination distribution and an inverse response function. The
reason why the estimated inverse response function in Fig. 2 (g) deviates from
the ground truth when pixel values are large is that the number of bright pixels
is small in the input image in Fig. 1 (a), and therefore the constraints from those
pixels are loose.

Effectiveness of Haar Wavelets:

Comparing the results of HW + RF, i.e. our proposed method with those of
L-SR + RF [8] in Figs. 2, 3, and Table 1, we can see that our method works
better than L-SH + RF both qualitatively and quantitatively. Moreover, our
method works better than H-SH + RF, i.e. even when we increase the degree
of spherical harmonics from 2 (N=9) to 35 (N=1296). Specifically, the RMSEs
of our method using Haar wavelets are significantly smaller than those of the
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HW + RF HW + RF HW L-SH + RF H-SH + RF
w/o mask with mask with mask with maskwith mask

Fig. 6. The results for the first real image: (a) the ground truth of the illumination
distribution, and those estimated by using (b) HW + RF w/o mask, (c) HW + RF with
mask, (d) HW, (e) L-SH + RF, and (f) H-SH + RF respectively, and the corresponding
inverse response functions estimated by using (g) HW + RF w/o mask, (h) HW + RF
with mask, (i) L-SH + RF, and (j) H-SH + RF respectively, where the ground truth
(dotted line) is superimposed.

methods using spherical harmonics. Those results show that Haar wavelets are
effective for representing illumination distributions.

Hence, we can conclude that our proposed method works better than the
existing/closely-related methods. In particular, we confirmed the effectiveness of
both the joint estimation and the Haar wavelets.

3.2 Comparison Using Real Images

In order to show the effectiveness of our proposed method for real images, we
compared our method with the other three methods by using real images in a
similar manner to the previous subsection. Fig. 4 shows the real input images
of a scene captured by the same Point Grey camera (Chameleon) with different
settings in response functions. Fig. 5 shows (a) the edges extracted by using the
Canny edge detector and (b) the mask for the real input image in Fig. 4 (a).

Fig. 6 shows the results for the first real image: (a) the ground truth of
the illumination distribution, and those estimated by using (b) HW + RF w/o
mask, (c) HW + RF with mask, (d) HW, (e) L-SH + RF, and (f) H-SH + RF
respectively. Here, we consider the illumination distribution estimated from the
image with a linear response function by using HW with mask as the ground
truth. We show the corresponding inverse response functions estimated by using
HW + RF w/o mask, HW + RF with mask, L-SH + RF, and H-SH + RF
in (g), (h), (i), and (j) respectively, where the ground truth (dotted line) is
superimposed on each result. Fig. 7 shows the relighting images by using (a) the
ground truth of the illumination distribution, and those estimated by using (b)
HW + RF w/o mask, (c) HW + RF with mask, (d) HW, (e) L-SH + RF, and
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(a) (b) (d) (e)(c) (f)

HW + RF HW + RF HW L-SH + RF H-SH + RF
w/o mask with mask with mask with maskwith mask

Fig. 7. The relighting images by using (a) the ground truth of the illumination distri-
bution, and those estimated by using (b) HW + RF w/o mask, (c) HW + RF with
mask, (d) HW, (e) L-SH + RF, and (f) H-SH + RF respectively.

Table 2. The RMSEs of the relighting images in Fig. 7 and those of the estimated
inverse response function in Fig. 6 for the two images shown in Fig. 4 (a) and (b).

method mask
relighting image response function
(a) (b) (a) (b)

HW + RF w/o 0.206 0.036 0.231 0.095
HW + RF w 0.082 0.031 0.080 0.033

HW w 0.229 0.219 - -
L-SH + RF w 0.235 0.201 0.217 0.256
H-SH + RF w 0.247 0.280 0.125 0.549

(f) H-SH + RF respectively. Table 2 summarizes the RMSEs of the relighting
images in Fig. 7 and those of the estimated inverse response function in Fig. 6
for the two real images shown in Fig. 4 (a) and (b).

Effectiveness of Mask:

Comparing the results of HW + RF, i.e. our proposed method, without and
with mask in Figs. 6, 7, and Table 2, we can see that the proposed method with
mask works significantly better than that without mask. Those results show the
effectiveness of the mask when estimating from real images with approximate
geometry. Therefore, we used the mask for evaluating the performance of the
other methods: HW, L-SH + RF, and H-SH + RF.

Effectiveness of Joint Estimation:

Comparing the results of HW + RF, i.e. our proposed method with those of
HW in Figs. 6, 7, and Table 2, we can see that our method works better than
HW both qualitatively and quantitatively. Those results are consistent with the
results for synthetic images. The reason why the estimated inverse response
function in Fig. 6 (h) deviates from the ground truth when pixel values are large
is that the number of bright pixels is small in the input image in Fig. 4 (a), and
therefore the constraints from those pixels are loose.

Effectiveness of Haar Wavelets:
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(b) (c) (d)(a)

Fig. 8. The input images for the sensitivity analysis. We added zero-mean Gaussian
noises with the standard deviation (a) σ = 0, (b) σ = 0.01, (c) σ = 0.02, and (d)
σ = 0.04 respectively.

Table 3. The RMSEs of the relighting images synthesized from the illumination dis-
tributions estimated for various combinations of σ and w.

σ\w 0 10−4 10−3 10−2 10−1

0 0.012 0.012 0.018 0.106 0.399
0.01 0.134 0.123 0.071 0.056 0.383
0.02 0.175 0.170 0.151 0.065 0.260
0.04 0.203 0.197 0.178 0.155 0.064

Comparing the results of HW + RF, i.e. our proposed method with those of
L-SR + RF [8] in Figs. 6, 7, and Table 2, we can see that our method works
better than L-SH + RF both qualitatively and quantitatively. Moreover, our
method works better than H-SH + RF, i.e. even when we increase the degree
of spherical harmonics from 2 (N=9) to 35 (N=1296). Those results are also
consistent with the results on synthetic images.

Hence, we can conclude that our proposed method works better than the
existing/closely-related methods. In particular, we confirmed the effectiveness of
the mask for real images with approximate geometry in addition to the effec-
tiveness of the joint estimation and the Haar wavelets.

3.3 Sensitivity Analysis

The performance of our proposed method depends on the value of the weight w
in eq.(6) as well as noises. Accordingly, we studied the sensitivity of our method
to the value of the weight w and noises by using synthetic images. Specifically,
we added zero-mean Gaussian noises with varying standard deviation σ to the
synthesized image of the first scene as shown in Fig. 8, and then estimated the
illumination distribution and the inverse response function with varying weight
w. Table 3 summarizes the RMSEs of the relighting images synthesized from the
illumination distributions estimated for various combinations of σ and w.

We can see that the sparseness term, i.e. non-zero weight w is not always
necessary when using noiseless image in Fig. 8 (a). On the other hand, we can see
that the sparseness term works well when Gaussian noises are added to the input
image. In particular, the performance of our proposed method is not sensitive to
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the value of the weight, and w = 10−2 is the best for realistic noise levels such
as σ = 0.01 and σ = 0.02.

4 CONCLUSION

In this paper, we proposed a method for jointly estimating both the illumina-
tion distribution of a scene and the radiometric response function of a camera
from cast shadows in a single input image. Specifically, our proposed method
represents the illumination distribution and the response function by using Haar
wavelets with the sparseness constraint and polynomials respectively, and then
estimates their coefficients. We conducted a number of experiments using both
synthetic and real images, and confirmed that our method works better than
the existing methods. Incorporating our method into multi-view inverse render-
ing [15, 13, 16, 4] is one of the directions of our future work.
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