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Abstract—The appearance of an object depends on the color
as well as the direction of a light source illuminating the object.
The progress of LEDs enables us to capture the images of an
object under multispectral and multidirectional light sources.
Separating diffuse and specular reflection components in those
images is important for preprocessing of various computer
vision techniques such as photometric stereo, material editing,
and relighting. In this paper, we propose a robust method for
separating reflection components in a set of images of an object
taken under multispectral and multidirectional light sources. We
consider the set of images as the 3D data whose axes are the
pixel, the light source color, and the light source direction, and
then show the inherent structures of the 3D data: the rank 2
structure derived from the dichromatic reflection model, the rank
3 structure derived from the Lambert model, and the sparseness
of specular reflection components. Based on those structures,
our proposed method separates diffuse and specular reflection
components by combining sparse NMF and SVD with missing
data. We conducted a number of experiments by using both
synthetic and real images, and show that our method works better
than some of the state-of-the-art techniques.

I. INTRODUCTION

The appearance of an object depends not only on the object
itself but also on the light source illuminating the object.
In particular, it depends on the color, i.e. spectral intensity
as well as the direction of the light source. Conventionally,
the dependencies on lighting color and lighting direction are
often studied in separate fields; color analysis (or multispectral
imaging) studies images under multispectral light sources
whereas shading analysis studies images under multidirectional
light sources.

Recently, the progress of light-emitting diodes (LEDs)
enables us to capture a set of images of an object under
multispectral and multidirectional light sources by using the
multi/hyper-spectral light stages [1], [S], [6] which extend the
setup of Debevec ef al. [3] as shown in Fig. 1. It is reported
that integrating color analysis and shading analysis by using
images under multispectral and mutidirectional light sources is
effective for raw material classification [5], bidirectional tex-
ture function (BTF) classification [8], and surface reflectance
and normal recovery [6].

In general, the reflected light observed on an object surface
consists of a diffuse reflection component and a specular
reflection component. Separating those reflection components
is important for preprocessing of various computer vision tech-
niques such as photometric stereo [15], image-based material
editing [9], and relighting [4].
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Fig. 1. Our multispectral light stage termed Kyutech Light Stage I [6]. It
consists of LED clusters, each of which has LEDs with different spectral
intensities.
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Fig. 2. A set of images of an object captured from a fixed viewpoint but
under multispectral and multidirectional light sources are represented as the
3D data whose axes are the pixel p, the light source color ¢, and the light
source direction d.

In this paper, we propose a robust method for separating
reflection components in images taken under multispectral and
multidirectional light sources. Such a problem is challenging
as discussed in more detail in Section II. First, the color-
based approach [11] does not work well because the spectral
intensities of LEDs are often narrow-band, and then the color
of a specular reflection component is almost the same as that
of a diffuse reflection component. Second, the approach based
on the low-rankness of diffuse reflection components [12]
assumes that the light source color is not variable but fixed.

Accordingly, we consider the images of an object captured
from a fixed viewpoint but under multispectral and multidirec-
tional light sources as the 3D data whose axes are the pixel
p, the light source color ¢, and the light source direction d as
illustrated in Fig.2. Then, we reveal the inherent structures of



the 3D data: the rank 2 structure of pixel values on the slice A
in Fig.2 derived from the dichromatic reflection model [11],
the rank 3 structure of diffuse reflection components on the
slice B derived from the Lambert model, and the sparseness
of specular reflection components. Based on those structures,
our proposed method separates diffuse and specular reflection
components by combining sparse NMF [10] and SVD with
missing data [13].

To confirm the effectiveness of our proposed method, we
conducted a number of experiments by using both synthetic
and real images. The experimental results show that taking all
of the inherent structures of the 3D data into consideration
is effective for robustly separating reflection components and
that our method works better than some of the state-of-the-art
methods based on color [2] and low-rankness [16].

The main contribution of this paper is threefold. First, we
address a novel problem of separating reflection components in
images under multispectral and multidirectional light sources.
Second, we consider those images as the 3D data, and reveal
its inherent structure. Third, based on the structure of the 3D
data, we propose a robust method for separating diffuse and
specular reflection components.

II. RELATED WORK

Existing methods can be classified into three approaches:
(i) the color-based approach, (ii) the approach based on the
low-rankness of diffuse reflection components, and (iii) the
polarization-based approach. In this section, we briefly explain
the point of each approach, and then discuss the limitations of
those approaches when they are used for separating reflection
components in images under multispectral and multidirectional
light sources.

The first approach based on color makes use of the differ-
ence between the colors of a specular reflection component and
a diffuse reflection component. According to the dichromatic
reflection model [11], the former is the same as the light source
color whereas the latter depends on the spectral reflectance of
a surface. The color-based approach has an advantage that it
can be applied even to a single image, i.e. the column C in
Fig.2.

Unfortunately, however, the color-based approach does not
necessarily work well for images taken under LEDs. This is
because the spectral intensities of LEDs are often narrow-
band. It is almost impossible to distinguish the color of a
specular reflection component from that of a diffuse reflection
component in a single image taken under a narrow-band light
source. In addition, when the color-based approach is used
independently for each image, we cannot capture the inherent
structures of the 3D data described in Sections III.A and III.B.

The second approach is based on the low-rankness of
diffuse reflection components under varying light source di-
rections. Specifically, the image of a Lambertian object under
an arbitrary directional light source is represented by the
linear combination of three basis images of the object [12].
Therefore, we can extract diffuse reflection components from
a set of images of an object taken under multidirectional

IWe mention the effects of attached shadows and/or cast shadows in Section
I11.B.
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light sources, i.e. the slice B in Fig.2 via low-rank matrix
completion and recovery [16] for example.

Unfortunately, however, the approach based on the low-
rankness assumes that the light source color is not variable
but fixed because the images of an object under multispectral
light sources live in 3D subspaces different from each other.
Therefore, when it is used independently for each slice with a
fixed light source color, we cannot capture the inherent struc-
ture of the 3D data under varying light source colors described
in Sections III.A. In addition, although the approach based on
the low-rankness can extract diffuse reflection components on
the Slice B in Fig. 2, there is no guarantee that the remaining
components are specular reflection components due to noise.

The third polarization-based approach makes use of the
difference of the polarization states of a specular reflection
component and a diffuse reflection component. When we
observe the reflected light from an object surface illuminated
by polarized light, the former is polarized whereas the latter is
unpolarized [14]. The polarization-based approach requires a
set of images taken by placing linear polarizing filters in front
of a light source and a camera, and rotating one of them.

The polarization-based approach is not necessarily suited
for multi/hyper-spectral light stages due to the following two
reasons. First, placing linear polarizing filters in front of light
sources is more burdensome, as the number of light sources
increases. Second, more importantly, capturing a large number
of images by rotating the linear polarizing filter in front of
a camera is time consuming. This is a serious problem for
multi/hyper-spectral light stages using LEDs because LEDs
are usually dim and require long exposure time.

III. PROPOSED METHOD

We assume that the color images of an object of interest
are captured from a fixed viewpoint and under multispectral
and multidirectional light sources by using a multispectral light
stage similar to the existing ones [1], [5], [6] as shown in Fig. 1.
Specifically, the light stage has D LED clusters at different
directions, and each cluster has C' LEDs with different spectral
intensities, i.e. C' x D LEDs in total.

For the sake of simplicity, we consider the C' color im-
ages taken under C' different light source colors as the 3C'
grayscale images taken under 3C' different light source colors
without loss of generality. We denote the pixel value at the
p-th pixel (p = 1,2,3,...,P) under the c-th light source
color (¢ = 1,2,3,...,3C) and the d-th light source direction
(d=1,2,3,..., D) by ipeq.

A. Varying Light Source Colors and Directions

First, let us consider the slice A in Fig. 2, i.e. the variation
of pixel values at a fixed pixel but under varying light source
colors and directions.

According to the dichromatic reflection model [11], the
observed pixel value 7.4 is the sum of a specular reflection
component and a diffuse reflection component:

ipcd = S1,e9p1,d + Sp2,c9p2,d; (1)

where the first and second terms are the specular and diffuse
reflection components respectively. The specular reflection



component is described by the product of the spectral term
51,c and the geometric term g,1,4. The former depends on the
spectral intensity of a light source and the spectral sensitivity of
a camera, and the latter depends on both the viewing and light
source directions. In a similar manner, the diffuse reflection
component is described by the product of the spectral term
Sp2,c and the geometric term g,2 4. The former depends on
the spectral reflectance of a surface in addition to the spectral
intensity and the spectral sensitivity, and the latter depends on
the light source direction.

Therefore, the 3C' x D matrix I,, whose (c, d)-th element
is given by ¢,.q, is described as

I, =519, + Sp2gp- 2)

Here, the c-th element of the 3C-dimensional vector s; is s1 .,
the d-th element of the D-dimensional vector gp1 is gpi,4.
and so on. The vectors s; and s, represent the colors of the
specular and diffuse reflection components respectively under
varying light source colors. The vectors g, and g, represent
the intensity profiles of the specular and diffuse reflection
components respectively under varying light source directions.
It is known that the color of the specular reflection component
s1 is the same as the color of the light sources [11], and that
the intensity profile of the specular reflection component g, is
sparse since specularity is observed only under a small number
of light source directions.

From eq.(2), the matrix I, is represented as the product of
the 3C x 2 matrix S, and the 2 x D matrix G:

(51 8p )(9;1 ) 3)

g p2
YN 4)

I, =

Thus, the matrix consisting of the pixel values at a fixed pixel
but under varying light source colors and directions, i.e. I,
has rank 2.

Note that the rank of I, is 2 even when attached shadows
and/or cast shadows are observed at the p-th pixel, because the
geometric terms include them. Therefore, we can make use of
the rank 2 structure of pixel values on the slice A without
paying special attention to those shadows.

B. Varying Pixels and Light Source Directions

Second, let us consider the slice B in Fig.2, i.e. the
variation of pixel values under a fixed light source color but
at varying pixels and under varying light source directions.

Assuming the Lambert model, the diffuse reflection com-
ponent, i.e. the second term of the right-hand side of eq.(1) is
described as

$p2,cYp2,d = /lc()\)rp()\)S()\)d)\ nyla. 3)

Here, I.(A\), 7p(A), s(A), nyp, and Iy are the spectral intensity
of the c-th light source color, the spectral reflectance at the p-th
pixel, the spectral sensitivity of a camera, the surface normal at
the p-th pixel, and the d-th light source direction respectively.

Therefore, the P x D matrix D,, whose (p, d)-th element is
given by 5,5 cGp2,4, 18 represented as the product of the P x 3
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matrix and the 3 x D matrix:

D.=| [LM)rWsNdAn] | (- ). ©

Thus, the matrix consisting of the diffuse reflection compo-
nents under a fixed light source color but at varying pixels
and under varying light source directions, i.e. D,. has rank 3.
In other words, the image of a Lambertian object under an
arbitrary directional light source is represented by the linear
combination of three basis images of the object [12]°.

Note that the rank of D, deviates from 3 when attached
shadows and/or cast shadows are observed under varying light
source directions. As described in Section III.D, we remove
the effects of those shadows so that we can make use of the
rank 3 structure of diffuse reflection components on the slice
B.

C. Separating Reflection Components

Based on the structures described in Sections III.A and
III.B, we propose a method for separating reflection compo-
nents in images taken under multispectral and multidirectional
light sources as follows:

. A . 1
{8p2,Gp} = arg min }§||Ip —5,Gyl[3, Vp N

Sp2,Gp
subject to sp2. > 0,9p1,d > 0,9p2,4 > 0, Vp,c,d (8)
llgp1llo < L,Vp ©))
rank(D,) = 3, Vc. (10)

Our proposed method assumes that the color of the specular
reflection component s; is known?*, and estimates the color of
the diffuse reflection component s,,5 and the intensity profiles
of the specular and diffuse reflection components G, for all
pixels.

More specifically, based on the rank 2 structure described
in Section III.A, our proposed method decomposes the matrix
I, into the matrices S, and G, for each pixel as eq.(7). Since
both the spectral and geometric terms are non-negative, we
impose the non-negativity constraints on the elements of s
and G, as eq.(8). In addition, our method takes the sparseness
of the intensity profile of the specular reflection component
gp1 into consideration as eq.(9). Here, L is the parameter
for controlling the sparseness. Based on the rank 3 structure
described in Section III.B, we impose the rank 3 constraints
on the matrix consisting of diffuse reflection components for
each light source color as eq.(10).

D. Implementation Details

We solve the optimization problem of eq.(7) with the
constraints of eq.(8) to eq.(10) by iteratively using sparse NMF

2We assume that an object of interest has 3D shape. Degenerate cases
include 1D planar objects and 2D cylindrical objects.

31t is clear that those three basis images depend on the light source color
as [ le(A)rp(A)s(A)dA in eq.(6). Therefore, the images of an object under
multispectral light sources live in 3D subspaces different from each other.

4We assume that the spectral intensities of light sources and the spectral
sensitivity of a camera are calibrated in advance.
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Fig. 3. The results of our proposed method on synthetic images (sphere): (a)
the input images, (b) the diffuse and (c) the specular reflection components
separated by using our method, when o = 8.

(non-negative matrix factorization) on the slice A and SVD
(singular value decomposition) with missing data on the slice
B in Fig.2 as follows.

1)  For each pixel, updating s,z and G, by using sparse
NMF with Ly constraints [10].

2)  Converting s,» and g, for all pixels into D, for all
light source colors.

3)  For each light source color, approximating D, with a
rank 3 matrix by using SVD with missing data [13].

4)  Converting D, for all light source colors into spgngQ
for all pixels.

5)  For each pixel, decomposing spgg;2 into s, and g2
by using NMF.

6) Repeating 1) to 5) until convergence.

Before the step 1), we compute the median of the 3C-
dimensional pixel colors observed under D light source direc-
tions, and use it for initializing s,5. In the step 3), we consider
shadowed pixels with smaller pixel values than a threshold
as missing data. We empirically confirmed that the above
optimization is usually converged within a few iterations.

IV. EXPERIMENTS

To confirm the effectiveness of our proposed method, we
conducted a number of experiments by using both synthetic
and real images.

A. Synthetic Images

First, we compared the performance of our proposed
method with those of the following methods by using synthetic
images.

e  Sparse NMF: This is a building block of our proposed
method, in particular eq.(7) to eq.(9), and is based
only on the rank 2 structure of pixel values and the
sparseness of specular reflection components on the
slice A. It has an empirical parameter for controlling
the sparseness of specular reflection components.

e SVD with missing data: This is another building
block of our method, in particular eq.(10), and is
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Fig. 4. The comparison with other methods on synthetic images (sphere): the
diffuse reflection components separated by using (a) the sparse NMF, (b) the
SVD with missing data, (c) Wu et al. [16], and (d) Akashi and Okatani [2].

(@) (b) () (d) (e) ()

Fig. 5. The diffuse reflection components: (a) the ground truth and those
separated by using (b) our proposed method, (c) the sparse NMF, (d) the SVD
with missing data, (¢) Wu et al. [16], and (f) Akashi and Okatani [2]. They
are closeups from Fig.3 and Fig. 4.

based only on the rank 3 structure of diffuse reflection
components on the slice B. It has an empirical param-
eter for removing specular reflection components as
outliers by thresholding.

e Wu et al. [16]: This method makes use of the low-
rankness of diffuse reflection components as well
as the sparseness of specular reflection components
and shadows under varying light source directions”.
It has an empirical parameter for controlling their
sparseness. As described in Section II, we used it for
each slice with a fixed light source color.

e Akashi and Okatani [2]: This method makes use
of the sparseness of body colors in addition to the
difference between the colors of a specular reflection
component and a diffuse reflection component. It has
an empirical parameter for controlling the sparseness
of body colors. As described in Section II, we used it
for each image.

We synthesized 120 images of a sphere under multispectral
and multidirectional light sources. The sphere has texture
consisting of 4 different spectral reflectances: the red, green,
blue, and yellow from the X-Rite color checker. The number
of light source colors is 6 (C' = 6) and the number of light
source directions is 20 (D = 20). The spectral intensities and
directions of the light sources are the same as those of our
multispectral light stage. In order to prevent saturated pixels,

SWe implemented eq.(9) in their paper by using the augmented Lagrangian
multiplier method [7].



TABLE 1.

THE RMS ERRORS OF THE SEPARATED REFLECTION COMPONENTS: DIFFUSE (TOP) AND SPECULAR (BOTTOM) IN EACH FIELD.

Method\Noise level (o) 0 1 2 4 8 16

Proposed method 0.11 0.25 0.46 0.91 1.87 4.57
based on both the structures on the slices A and B | 0.11 0.24 0.46 0.93 1.80 3.50
Sparse NMF 0.07 0.32 0.63 1.27 2.51 5.05
based only on the structure on the slice A 0.11 0.26 0.48 0.95 1.83 3.54
SVD with missing data 2.74 2.84 3.04 3.63 5.65 | 13.19
based only on the structure on the slice B 2.19 2.34 2.66 3.57 593 | 11.95
Wu et al. [16] 2.27 2.49 2.93 4.12 6.81 | 12.28
based on low-rankness and sparseness 227 2.37 2.52 2.87 3.62 5.11
Akashi and Okatani [2] 18.74 | 20.37 | 20.68 | 21.62 | 21.77 | 23.99
based on color and sparseness 18.24 | 19.79 | 20.14 | 21.01 | 20.83 | 21.54

we assume HDR images, i.e. the pixel values are not 8-bit
integers but real numbers. We added Gaussian noise, whose
mean and standard deviation are 0 and o respectively, to each
pixel value, and then used them as input. The parameter of
our method for controlling the sparseness, i.e. L in eq.(9), is
empirically set to 5. The parameters of the other methods, one
for each method, are tuned so that they perform best.

In Fig.3, we show some of (a) the input images, (b) the
diffuse and (c) the specular reflection components separated by
using our proposed method, when o = 8. Here, we converted
HDR images into 8-bit images for display purpose®. We can
qualitatively see that our method works well.

In Fig. 4, we show the diffuse reflection components sepa-
rated by using (a) the sparse NMF, (b) the SVD with missing
data, (c) Wu et al. [16], and (d) Akashi & Okatani [2] for the
comparison with our proposed method. We can see that (a)
the result of the sparse NMF is slightly noisier than that of
our method. In addition, we can see that some artifacts due to
specular reflection components are visible in the results of (b)
the SVD with missing data and (c) Wu et al. [16]. It is clear
that (d) Akashi and Okatani [2] does not work well because
the color of a specular reflection component is almost the same
as that of a diffuse reflection component due to narrow-band
LEDs as suggested also in their paper. The effectiveness of
our method is clear from the closeups shown in Fig.5.

For quantitative comparison, we summarize the RMS (root-
mean-square) errors of the separated diffuse and specular
reflection components in TABLE I, where o varies from 0
to 16. We can see that our proposed method works best
except for 0 = 0. Specifically, our method based on both
the structures on the slices A and B works better than the
sparse NMF based only on the structure on the slice A and
than the SVD with missing data based only on the structure
on the slice B. Therefore, we can conclude that taking all of
the inherent structures of the 3D data into consideration is
effective for robustly separating diffuse and specular reflection
components in images under multispectral and multidirectional
light sources. In addition, our method works better than some
of the state-of-the-art methods based on low-rankness [16] and
color [2].

B. Real Images

Second, we compared the performance of our proposed
method with that of the sparse NMF, i.e. the second best

The value of o is defined in 8-bit images and then scaled for HDR images.
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Fig. 6. The results on real images (wooden bread): (a) the input images,
(b) the diffuse and (c) the specular reflection components separated by using
our method, and (d) the diffuse and (e) the specular reflection components

separated by using the sparse NMF.
b)

Fig. 7. The diffuse reflection components separated by using (a) our proposed
method and (b) the sparse NMF. They are closeups from Fig. 6(b) and (d).

(a) (

method in TABLE I by using real images. Since it is not easy
to acquire the ground truth by using the polarization-based
approach as described in Section II, we qualitatively discuss
the experimental results.

We used 120 images of target objects captured by using our
multispectral light stage termed Kyutech Multispectral Light
Stage I [6] in Fig. 1. The number of light source colors is
6 (C = 6) and the number of light source directions is 20



Fig. 8.
images, (b) the diffuse and (c) the specular reflection components separated
by using our method, and (d) the diffuse and (e) the specular reflection
components separated by using the sparse NMF.

The results on real images (ceramic hippopotamus): (a) the input

(D = 20). The target objects are a wooden bread and a ceramic
hippopotamus. We empirically set the parameter L in eq.(9)
to 3.

In Fig. 6, we show some of (a) the input images, (b) the
diffuse and (c) the specular reflection components separated
by using our proposed method, and (d) the diffuse and (e)
the specular reflection components separated by using the
sparse NMF. We can find that some spot-like artifacts due to
specular reflection components are visible in (d) the diffuse
reflection components separated by using the sparse NMF.
This is because the sparse NMF is applied for each pixel,
and does not take the rank 3 structure of diffuse reflection
components at varying pixels and under varying light source
directions. On the other hand, we can see that (b) the dif-
fuse reflection components separated by using our method is
smooth. The effectiveness of our method is clear from the
closeups shown in Fig. 7. This result also shows that taking all
of the inherent structures of the 3D data into consideration is
effective for robustly separating diffuse and specular reflection
components in images under multispectral and multidirectional
light sources. Fig. 8 shows that our method works well for a
different material.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a robust method for separating
diffuse and specular reflection components in a set of images of
an object taken under multispectral and multidirectional light
sources. Specifically, our proposed method considers the set
of images as the 3D data, and then makes use of the inherent
structures of the 3D data: the rank 2 structure of pixel values
under varying light source colors and directions, the rank 3
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structure of diffuse reflection components at varying pixels
and under varying light source directions, and the sparseness
of specular reflection components. We conducted a number
of experiments by using both synthetic and real images, and
show that taking all of the inherent structures of the 3D data
into consideration is effective for robustly separating reflection
components, and that our method works better than some of
the state-of-the-art techniques.

The future work of this study includes the extension to
other components such as interreflection and fluorescence. The
application to computer vision techniques such as photometric
stereo, material editing, and relighting is another direction of
the future work.
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