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ABSTRACT

Separating diffuse and specular reflection components is im-
portant for preprocessing of various computer vision tech-
niques such as photometric stereo. In this paper, we address
diffuse-specular separation for photometric stereo based on
light fields. Specifically, we reveal the low-rank structure of
the multi-view images under varying light source directions,
and then formulate the diffuse-specular separation as a low-
rank approximation of the 3rd order tensor. Through a num-
ber of experiments using real images, we show that our pro-
posed method, which integrates the complement clues based
on varying light source directions and varying viewing direc-
tions, works better than existing techniques.

Index Terms— photometric stereo, reflectance separa-
tion, light field, higher-order SVD

1. INTRODUCTION

Photometric stereo is a technique for estimating surface nor-
mals from the shading observed on an object surface under
varying illumination. In contrast to multi-view stereo for es-
timating the depths of possibly sparse corresponding points,
photometric stereo can estimate pixel-wise surface normal,
i.e. densely recover the shape of an object.

In general, the reflected light observed on an object
surface consists of a diffuse reflection component and a
specular reflection component. The conventional photomet-
ric stereo [1] assumes the Lambert model and known light
sources, and then specular reflection components are outliers
to be removed. On the other hand, in the context of uncal-
ibrated photometric stereo [2] assuming the Lambert model
and unknown light sources, specular reflection components
are an important clue for uniquely recovering the shape of an
object [4, 5] by resolving the Generalized Bas-Relief (GBR)
ambiguity [3]. Therefore, separating diffuse and specular
reflection components of the images of an object taken under
varying light source directions is an important topic to be
addressed for photometric stereo.

In this paper, we address diffuse-specular separation for
photometric stereo based on light fields. Since light field cam-
eras [6] can capture multi-view images in a single shot, we

study diffuse-specular separation of multi-view images under
varying illumination, and propose a robust method by inte-
grating a clue based on varying light source directions and a
clue based on varying viewing directions.

Specifically, we represent the multi-view images of an ob-
ject under varying light source directions as the 3rd order ten-
sor whose axes are the position on the object surface, the light
source direction, and the viewing direction. Then, we reveal
the low-rank structure of the tensor on the basis of the facts
that the brightness of a diffuse reflection component is inde-
pendent of viewing directions and that it is given by the inner
product between a light source direction and a normal,i.e. bi-
linear with respect to them. Based on the above theoretical
insight, our proposed method separates diffuse and specular
reflection components via low-rank tensor approximation us-
ing higher-order Singular Value Decomposition (SVD) [7]. In
addition, SVD with missing data [8] is incorporated into our
method in order to take outliers such as specular reflection
components and shadows into consideration.

To demonstrate the effectiveness of our proposed method,
we conducted a number of experiments using real images. We
show that our method, which integrates the complement clues
based on varying light source directions and varying viewing
directions, performs better than existing techniques.

2. RELATED WORK

Existing techniques for diffuse-specular separation can be
classified into the following four approaches.

Varying viewing directions: The reflected light observed
on an object surface consists of a viewpoint-invariant diffuse
reflection component and a viewpoint-dependent specular re-
flection component. Then, we can consider the darkest inten-
sity at a point on the surface seen from varying viewing direc-
tions as the diffuse reflection component [9, 10]. In contrast
to this approach, our proposed method makes use of varying
light source directions as well as varying viewing directions.

Varying light source directions: An image of a Lamber-
tian object under an arbitrary directional light source is rep-
resented by a linear combination of three basis images of the
object [11]. Then, the approach based on varying light source
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Fig. 1. A microlens-based light field camera: the rays emitted
from a point on an object surface are focused on a microlens.

Fig. 2. The closeup of a raw light field image.

directions is often used for photometric stereo, and a num-
ber of techniques such as low-rank matrix recovery [11, 12]
have been proposed. In contrast to this approach, our method
makes use of not only varying light source directions but also
varying viewing directions.

Polarizations: When we observe the reflected light from
an object surface illuminated by polarized light, specular re-
flection components are polarized whereas diffuse reflection
components are unpolarized [13]. Then, the difference of the
polarization states can be used for diffuse-specular separa-
tion. The polarization-based approach requires a set of im-
ages taken by placing linear polarizing filters in front of a
light source and a camera, and rotating one of them.

Colors: The color-based approach makes use of the dif-
ference between the colors of a specular reflection component
and a diffuse reflection component. According to the dichro-
matic reflection model [14], the former is the same as the light
source color whereas the latter depends on the spectral re-
flectance of a surface. This approach does not work well for
objects with low-saturation reflectance and for narrow-band
light sources such as LED, because the color of a specular re-
flection component is almost the same as the color of a diffuse
one for them.

3. PROPOSED METHOD

3.1. Raw Light Field Image

In this study, we assume microlens-based light field cameras
in which an array of microlenses is placed in front of an imag-
ing sensor. As shown in Fig. 1, our proposed method assumes
that a camera focuses on an object of interest1, i.e. the rays
emitted from a point on the object surface are focused on a

1We consider the target objects and/or imaging conditions such that par-
allaxes are negligible,e.g.near-planar objects.

Fig. 3. Unfolding the 3rd order tensor with respect to each
axis:M = 4, L = 2, andV = 3 for display purpose.

microlens. Therefore, the pixels just below a microlens cap-
ture the intensities of the same point on the object surface seen
from varying viewing directions. We can observe the silhou-
ette of an array of microlenses in the closeup of a raw light
field image in Fig. 2.

3.2. Structure of 3rd Order Tensor

Let us consider a set of images of a static object taken by a
static light field camera but under varying light source direc-
tions. We denote the pixel value of thev-th (v = 1, 2, 3, ..., V )
pixel, i.e. observed from thev-th viewing direction, in
the m-th (m = 1, 2, 3, ...,M ) miclolens, i.e. observed
at them-th position on the object surface, under thel-th
(l = 1, 2, 3, ..., L) light source direction byimlv

2. Our pro-
posed method represents those pixel values as the 3rd order
tensorI whose axes are the position on the object surfacem,
the light source directionl, and the viewing directionv.

As shown in Fig. 3, we unfold the 3rd order tensorI with
respect to each axis, and then consider three matricesI(mlens),
I(light), andI(view) whose sizes areM × (LV ), L× (VM),
andV × (ML) respectively. Hereafter, we show that those
matrices are low-rank, when the all pixel values are described
by the Lambert model.

First, we consider the matrixI(mlens) at the top of Fig. 3.
This matrix consists ofV blocks with the size ofM × L.
According to the Lambert model, the pixel values of thel-th
column in the first block are given by ρ1n

⊤
1

...
ρMn⊤

M

 sl. (1)

2We assume thatM , L, andV are significantly larger than 3.
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Here,ρm andnm are the albedo and normal at the position
on the object surface corresponding to them-th microlens,
andsl is the light source vector whose norm and direction
are the intensity and direction of thel-th light source respec-
tively. Since the degree of freedom of the light source vector
is 3 in general3, the rank of the first block is 3. This means
that an image of a Lambertian object under an arbitrary di-
rectional light source is represented by a linear combination
of three basis images of the object [11]. In addition, since the
brightness of a diffuse reflection component is independent of
viewing directions, the other blocks are the same as the first
block, and therefore the rank of the matrixI(mlens) is also 3.

Second, let us consider the matrixI(light) at the middle
of Fig. 3. This matrix consists ofM blocks with the size of
L×V . Since the brightness of a diffuse reflection component
is viewpoint-invariant, the rank of each block is 1. According
to the Lambert model, the pixel values of an arbitrary column
in them-th block are given by s⊤1

...
s⊤L

 ρmnm. (2)

Since the degree of freedom of the vectorρmnm is 3 in gen-
eral4, the rank of the matrixI(light) is also 3.

Third, we consider the matrixI(view) at the bottom of
Fig. 3. It is obvious that the rank of the matrixI(view) is
1, since the brightness of a diffuse reflection component does
not depend on viewing directions. Hence, the structure of the
3rd order tensorI is revealed; the matrices given by unfolding
the tensor with respect to each axis are low-rank.

3.3. Low-Rank Tensor Approximation

Based on the low-rank structure of the 3rd order tensor,
our method separates diffuse and specular reflection compo-
nents via low-rank tensor approximation using higher-order
SVD [7]. First, we decompose the matrixI(mlens) as

I(mlens) = U(mlens)Σ(mlens)V
⊤
(mlens) (3)

by using SVD. Since the rank of the matrixI(mlens) is 3, we

obtain theM ×3 matrix Û(mlens) by keeping the eigenvectors
in the matrixU(mlens) corresponding to the 3 largest eigenval-

ues. In a similar manner, we obtain theL × 3 matrix Û(light)

and theV × 1 matrix Û(view).

By using those matrices, we compute the core tensorẐ as

Ẑ = I ×1 Û
⊤
(mlens) ×2 Û

⊤
(light) ×3 Û

⊤
(view) (4)

from the tensorI. Here,×n stands for then-th mode product.
We compute the low-rank approximation of the tensorI as

Î = Ẑ ×1 Û(mlens) ×2 Û(light) ×3 Û(view), (5)
3We assume that the light source vectors are not degenerate.
4The exception includes degenerate shapes such as a plane and a cylinder.

(a) (b) (c) (d)

(f)(e) (g) (h)

Fig. 4. The experimental results (ceramic dwarf): (a) an input
raw image, (b) our result raw image, (c) an input image, (d)
our result image, (e) our result image without outlier removal,
and the result images of existing techniques: (f) varying view-
ing directions, (g) varying light source directions, and (h) po-
larizations.

and consider it as diffuse reflection components.
In general, actual images consist of not only diffuse reflec-

tion components but also outliers such as specular reflection
components and shadows. Therefore, the low-rank matrices
Û(mlens), Û(light), andÛ(view) computed via SVD are contam-
inated by those outliers. Accordingly, our proposed method
makes use of SVD with missing data [8] instead of the con-
ventional SVD for computing the low-rank matrices without
contaminations due to those outliers5.

4. EXPERIMENTS

4.1. Experimental Results

To confirm the effectiveness of our proposed method, we con-
ducted a number of experiments using real images. We used
10 input images (L = 10) for each object taken by a static
light field camera, LYTRO ILLUM, but under varying light
source directions. The center coordinates of the microlenses
are calibrated by using the existing library [15].

In Fig. 4, we show (a) an input raw image of a ceramic
dwarf and (b) our result raw image6 under a certain light
source direction. We can see that the highlights due to specu-
lar reflection components are observed at saturated pixels and
their neighbors in (a) the input image, but they are success-
fully removed from (b) our result image.

Fig. 4 (c) and (d) are the images seen from the central
viewing direction synthesized from the raw images (a) and
(b) respectively. Those images also show that our proposed
method works well. In addition, (d) our result image is very

5Actually, we iteratively updatêU(mlens), Û(light), Û(view), andẐ by
taking outliers into consideration.

6We handle the pixels within the radius of 6 pixels from the centers of
microlenses, and black out other pixels.
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Fig. 5. The experimental results (wood bread): (a) an in-
put image, (b) our result image, (c) our result image without
outlier removal, and the result images of existing techniques:
(d) varying viewing directions, (e) varying light source direc-
tions, and (f) polarizations.

smooth, because noises,e.g. zero-mean Gaussian noises, are
canceled out by applying SVD to the pixel values observed at
a point on an object surface from varying viewing directions.
Those results qualitatively show that our method works well.

4.2. Comparison with Existing Techniques

We compared the performance of our proposed method with
those of four closely related methods. In Fig. 4, we show
the result images of (e) our method without outlier removal,
(f) the method based on varying viewing directions, (g) the
method based on varying light source directions, and (h) the
polarization-based method.

First, Fig. 4 (e) shows that our method without outlier re-
moval cannot remove specular reflection components, in par-
ticular, the result image is contaminated by the highlights ob-
served under the all light source directions. This result shows
the effectiveness of outlier removal,i.e. the use of SVD with
missing data instead of the conventional SVD.

Second, in Fig. 4 (f), we can see that the method based on
varying viewing directions cannot remove specular reflection
components, when they are observed from the all viewing di-
rections. In addition, the method is sensitive to noises and
then the result image is rough, because it considers the dark-
est intensity as the diffuse reflection component.

Third, Fig. 4 (g) shows that the method based on varying
light source directions can remove most specular reflection
components, although some of them are still remaining. The
method is rather sensitive to noises and then the result image
is a little rough, because a set of images seen from a single
viewing direction instead of multiple ones are used.

Fourth, in Fig. 4 (h), we can see that the polarization-
based method7 can remove specular reflection components
well. Unfortunately, however, the method is sensitive to

7The result image is darker than those of the other methods due to the
use of polarization filters. Then, the result image is scaled so that its average
pixel value is the same as that of our method.
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Fig. 6. The shapes of the dwarf (a) with and (b) without the
GBR ambiguity.

noises and then the result image is rough, because a set of im-
ages seen from a single viewing direction and under a single
light source direction are used.

Fig. 5 shows that the experimental results for a wood
bread are similar to those for the ceramic dwarf. Here, the
noises in (f) the polarization-based method are removed by
averaging 64 images so that it is considered as the ground
truth. The root-mean-square errors of pixel values in 8 bit
images are 3.67, 7.49, 9.24, and 4.91 for (b) our method, (c)
our method without outlier removal, (d) varying viewing di-
rections, and (e) varying light source directions respectively.
This result quantitatively shows that our proposed method
performs better than those existing techniques.

4.3. Application to Uncalibrated Photometric Stereo

We can use the result of our proposed method for uncalibrated
photometric stereo. Fig. 6 (a) shows the 3D shape of the ce-
ramic dwarf recovered from the separated diffuse reflection
components up to the GBR ambiguity by imposing the in-
tegrability constraint [16]. The separated specular reflection
components are further useful for resolving the GBR ambi-
guity [5] as shown in Fig. 6 (b), where the convex/concave
ambiguity is resolved manually. Note that the depth clue for
resolving the GBR ambiguity is not available, when paral-
laxes are negligible.

5. CONCLUSION AND FUTURE WORK

In this paper, we addressed diffuse-specular separation for
photometric stereo based on light fields. Specifically, we re-
vealed the low-rank structure of the multi-view images un-
der varying light source directions, and then formulated the
diffuse-specular separation as a low-rank approximation of
the 3rd order tensor. Through a number of experiments using
real images, we confirmed that our proposed method, which
integrates the complement clues based on varying light source
directions and varying viewing directions, works better than
the existing techniques. The extension to scenes with non-
negligible parallaxes is one of the future directions of this
study.
AcknowledgmentsThis work was supported by JSPS KAK-
ENHI Grant Numbers JP16H01676 and JP17H01766.
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