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ABSTRACT study diffuse-specular separation of multi-view images under

Separating diffuse and specular reflection components is im2rying ilumination, and propose a robust method by inte-

portant for preprocessing of various computer vision tech_grating a clue based on varying light source directions and a

niques such as photometric stereo. In this paper, we addregI € bas.efj on varying viewing d”ec“‘?”s,- )
Specifically, we represent the multi-view images of an ob-

diffuse-specular separation for photometric stereo based on P S
light fields. Specifically, we reveal the low-rank structure oflect under varying light source directions as the 3rd order ten-

the multi-view images under varying light source directions SO whose axes are the position on the object surface, the light

and then formulate the diffuse-specular separation as a lowPUrce direction, and the viewing direction. Then, we reveal

rank approximation of the 3rd order tensor. Through a numthe low-rank structure of the tensor on the basis of the facts

ber of experiments using real images, we show that our prc}_hat the brightness of a diffuse reflection component is inde-

posed method, which integrates the complement clues basB§ndent of viewing directions and that itis given by the inner
on varying light source directions and varying viewing direc-Product between a light source direction and a norirelbi-

tions, works better than existing techniques. !lne_ar with respect to them. Based on the_ above theoretical
_ insight, our proposed method separates diffuse and specular
Index Terms— photometric stereo, reflectance separayeflection components via low-rank tensor approximation us-

tion, light field, higher-order SVD ing higher-order Singular Value Decomposition (SVD) [7]. In
addition, SVD with missing data [8] is incorporated into our
1. INTRODUCTION method in order to take outliers such as specular reflection

components and shadows into consideration.

Photometric stereo is a technique for estimating surface nor- To demonstrate the effectiveness of our proposed method,
mals from the shading observed on an object surface undere conducted a number of experiments using real images. We
varying illumination. In contrast to multi-view stereo for es- show that our method, which integrates the complement clues
timating the depths of possibly sparse corresponding point®ased on varying light source directions and varying viewing
photometric stereo can estimate pixel-wise surface normadlirections, performs better than existing techniques.
i.e. densely recover the shape of an object.

In general, the reflected light observed on an object
surface consists of a diffuse reflection component and a 2. RELATED WORK
specular reflection component. The conventional photomet-
ric stereo [1] assumes the Lambert model and known lighEXisting techniques for diffuse-specular separation can be
sources, and then specular reflection components are outlieg@ssified into the following four approaches.
to be removed. On the other hand, in the context of uncal- Varying viewing directions: The reflected light observed
ibrated photometric stereo [2] assuming the Lambert modedn an object surface consists of a viewpoint-invariant diffuse
and unknown light sources, specular reflection componenteflection component and a viewpoint-dependent specular re-
are an important clue for uniquely recovering the shape of aflection component. Then, we can consider the darkest inten-
object [4, 5] by resolving the Generalized Bas-Relief (GBR)sity at a point on the surface seen from varying viewing direc-
ambiguity [3]. Therefore, separating diffuse and speculations as the diffuse reflection component [9, 10]. In contrast
reflection components of the images of an object taken undde this approach, our proposed method makes use of varying
varying light source directions is an important topic to belight source directions as well as varying viewing directions.
addressed for photometric stereo. Varying light source directions: An image of a Lamber-

In this paper, we address diffuse-specular separation fdran object under an arbitrary directional light source is rep-
photometric stereo based on light fields. Since light field camresented by a linear combination of three basis images of the
eras [6] can capture multi-view images in a single shot, webject [11]. Then, the approach based on varying light source
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Fig. 2. The closeup of a raw light field image. Fig. 3. Unfolding the 3rd order tensor with respect to each

axis: M = 4, L = 2, andV = 3 for display purpose.

directions is often used for photometric stereo, and a num-

ber of techniques such as low-rank matrix recovery [11, 12fnicrolens. Therefore, the pixels just below a microlens cap-

have been proposed. In contrast to this approach, our methdigre the intensities of the same point on the object surface seen

makes use of not only varying light source directions but alsérom varying viewing directions. We can observe the silhou-

varying viewing directions. ette of an array of microlenses in the closeup of a raw light
Polarizations: When we observe the reflected light from field image in Fig. 2.

an object surface illuminated by polarized light, specular re-

flection components are_polarized whereas di_ffuse reflectiog_zl Structure of 3rd Order Tensor

components are unpolarized [13]. Then, the difference of the

polarization states can be used for diffuse-specular separpet us consider a set of images of a static object taken by a

tion. The polarization-based approach requires a set of instatic light field camera but under varying light source direc-

ages taken by placing linear polarizing filters in front of ations. We denote the pixel value of theth (v = 1,2, 3, ..., V)

light source and a camera, and rotating one of them. pixel, i.e. observed from thes-th viewing direction, in
Colors: The color-based approach makes use of the difthe m-th (m = 1,2,3,..., M) miclolens, i.e. observed

ference between the colors of a specular reflection componeat the m-th position on the object surface, under thth

and a diffuse reflection component. According to the dichro{l = 1,2, 3, ..., L) light source direction by,,;,2. Our pro-

matic reflection model [14], the former is the same as the lighposed method represents those pixel values as the 3rd order

source color whereas the latter depends on the spectral rensorZ whose axes are the position on the object surface

flectance of a surface. This approach does not work well fothe light source directiofy and the viewing direction.

objects with low-saturation reflectance and for narrow-band  As shown in Fig. 3, we unfold the 3rd order tengowith

light sources such as LED, because the color of a specular reaspect to each axis, and then consider three matfices.s).,

flection component is almost the same as the color of a diffusg(light), andZ(yiew) Whose sizes arg/ x (LV), L x (VM),

one for them. andV x (ML) respectively. Hereafter, we show that those
matrices are low-rank, when the all pixel values are described
3. PROPOSED METHOD by the Lambert model.
First, we consider the matrik i) at the top of Fig. 3.
3.1. Raw Light Field Image This matrix consists o/ blocks with the size of\/ x L.

) ) . . According to the Lambert model, the pixel values of tké
In this study, we assume microlens-based light field camerasyumn in the first block are given by

in which an array of microlenses is placed in front of an imag-
ing sensor. As shown in Fig. 1, our proposed method assumes pin]
that a camera focuses on an object of intetese. the rays

. - . sj. 1
emitted from a point on the object surface are focused on a . ! (1)
: . . . i PMTy,
1We consider the target objects and/or imaging conditions such that par- M
allaxes are negligibles.g. near-planar objects. 2We assume that/, L, andV are significantly larger than 3.
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Here, p,,, andn,,, are the albedo and normal at the position
on the object surface corresponding to theth microlens,
and s; is the light source vector whose norm and direction
are the intensity and direction of tlieh light source respec-
tively. Since the degree of freedom of the light source vector
is 3 in generaP, the rank of the first block is 3. This means
that an image of a Lambertian object under an arbitrary di-
rectional light source is represented by a linear combination
of three basis images of the object [11]. In addition, since the
brightness of a diffuse reflection component is independent of

viewing directions, the other blocks are the same as the first . . .
block, and therefore the rank of the matfix, . is also 3.

Second, let us consider the matfixi.,;) at the middle  Fig. 4. The experimental results (ceramic dwarf): (a) an input
of Fig. 3. This matrix consists af/ blocks with the size of raw image, (b) our result raw image, (c) an input image, (d)
L x V. Since the brightness of a diffuse reflection componengyr resultimage, (e) our result image without outlier removal,
is VieWpOint'inVariant, the rank of each block is 1. According and the result images of existing techniques: (f) Varying view-
to the Lambert mOdel, the pixe| Va|ueS of an arbitrary Columr]ng directionsl (g) Varying ||ght source directions' and (h) po-

(e)

in them-th block are given by larizations.
s
N @ . . :
T e and consider it as diffuse reflection components.
5L In general, actual images consist of not only diffuse reflec-
Since the degree of freedom of the vegigrn,,, is 3 in gen-  tion components but also outliers such as specular reflection
eral4, the rank of the matris j;gne) is also 3. components and shadows. Therefore, the low-rank matrices

Third, we consider the matrif e, at the bottom of  Utmiens): Uftight)» @NdUview) COMputed via SVD are contam-
Fig. 3. It is obvious that the rank of the matrf. is  inated by those outliers. Accordingly, our proposed method
1, since the brightness of a diffuse reflection component doggakes use of SVD with missing data [8] instead of the con-
not depend on viewing directions. Hence, the structure of thgentional SVD for computing the low-rank matrices without
3rd order tensaf is revealed; the matrices given by unfolding contaminations due to those outliers
the tensor with respect to each axis are low-rank.

4. EXPERIMENTS
3.3. Low-Rank Tensor Approximation

Based on the low-rank structure of the 3rd order tensor4 1. Experimental Results

our method separates diffuse and specular reflection comp®e confirm the effectiveness of our proposed method, we con-
nents via low-rank tensor approximation using higher-ordetjucted a number of experiments using real images. We used

SVD [7]. First, we decompose the matfli,c,s) as 10 input images X = 10) for each object taken by a static
T light field camera, LYTRO ILLUM, but under varying light
Z(miens) = Ulmicns) X (micns) V(mlens) 3 source directions. The center coordinates of the microlenses

by using SVD. Since the rank of the matff, ) is 3, we are calibrated by using the existing library [15].

obtain theM x 3 matrixU(mlenS) by keeping the eigenvectors In Fig. 4, we show (a) an input raw image of a ceramic

in the matrixU(,1ens) COrresponding to the 3 largest eigenval-dWarf an_d (b_) our result raw |mag‘éunQer_a certain light
o ; s source direction. We can see that the highlights due to specu-
ues. In a similar manner, we obtain thex 3 matrix U jgnt)

. lar reflection components are observed at saturated pixels and

and theV x 1 matrix U yicw)- R their neighbors in (a) the input image, but they are success-
By using those matrices, we compute the core tefsas  fully removed from (b) our result image.

Fig. 4 (c) and (d) are the images seen from the central

5 ST 5T AT
2 =T X1 Upmlens) %2 Ulignt) *3 Utview) “) viewing direction synthesized from the raw images (a) and
from the tensof. Here, x,, stands for the:-th mode product. ~ (b) respectively. Those images also show that our proposed
We compute the low-rank approximation of the tengas method works well. In addition, (d) our result Image Is very
5 5 7 3 3 SActually, we iteratively updaté/ 9, Ugi Utview), @and Z by
= X X s X : ' (mlens): Y (light): Y (view):
L = Z %1 Utniens) %2 Uttight) %3 Uview): ®) taking outliers into consideration.
3We assume that the light source vectors are not degenerate. 6We handle the pixels within the radius of 6 pixels from the centers of

4The exception includes degenerate shapes such as a plane and a cylindeicrolenses, and black out other pixels.
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Fig. 6. The shapes of the dwarf (a) with and (b) without the
(d) (e) ()

GBR ambiguity.

Fig. 5. The experimental results (wood bread): (a) an in-

put image, (b) our result image, (c) our result image W'thouhoises and then the result image is rough, because a set of im-

outlier removal, and the result images of existing techniques‘iges seen from a single viewing direction and under a single
(d) varying viewing directions, (e) varying light source direc- light source direction are used

tions, and (f) polarizations. Fig. 5 shows that the experimental results for a wood

bread are similar to those for the ceramic dwarf. Here, the
noises in (f) the polarization-based method are removed by
smooth, because noisesg. zero-mean Gaussian noises, aredveraging 64 images so that it is considered as the ground
canceled out by applying SVD to the pixel values observed dfuth. The root-mean-square errors of pixel values in 8 bit
a point on an object surface from varying viewing directionsimages are 3.67, 7.49, 9.24, and 4.91 for (b) our method, (c)
Those results qualitatively show that our method works well.our method without outlier removal, (d) varying viewing di-
rections, and (e) varying light source directions respectively.
This result quantitatively shows that our proposed method
performs better than those existing techniques.
We compared the performance of our proposed method with
those of four closely related methods. In Fig. 4, we show 3. Application to Uncalibrated Photometric Stereo
the result images of (e) our method without outlier removal,
(f) the method based on varying viewing directions, (g) the/Ve can use the result of our proposed method for uncalibrated
method based on varying light source directions, and (h) thBhotometric stereo. Fig. 6 (a) shows the 3D shape of the ce-
polarization-based method. ramic dwarf recovered from the separated diffuse reflection
First, Fig. 4 (€) shows that our method without outlier re-COMponents up to the GBR ambiguity by imposing the in-
moval cannot remove specular reflection components, in pafegrability constraint [16]. The separated specular reflection
ticular, the result image is contaminated by the highlights obcomponents are further useful for resolving the GBR ambi-
served under the all light source directions. This result show8uity [5] as shown in Fig. 6 (b), where the convex/concave
the effectiveness of outlier removak. the use of SVD with ~ ambiguity is resolved manually. Note that the depth clue for
missing data instead of the conventional SVD. resolving the GBR ambiguity is not available, when paral-
Second, in Fig. 4 (f), we can see that the method based daxes are negligible.
varying viewing directions cannot remove specular reflection
components, when they are observed from the all viewing di- 5. CONCLUSION AND FUTURE WORK
rections. In addition, the method is sensitive to noises and
then the result image is rough, because it considers the darky this paper, we addressed diffuse-specular separation for
est intensity as the diffuse reflection component. photometric stereo based on light fields. Specifically, we re-
Third, Fig. 4 (g) shows that the method based on varyingealed the low-rank structure of the multi-view images un-
light source directions can remove most specular reflectioder varying light source directions, and then formulated the
components, although some of them are still remaining. Thdiffuse-specular separation as a low-rank approximation of
method is rather sensitive to noises and then the result imagle 3rd order tensor. Through a number of experiments using
is a little rough, because a set of images seen from a singleal images, we confirmed that our proposed method, which
viewing direction instead of multiple ones are used. integrates the complement clues based on varying light source
Fourth, in Fig. 4 (h), we can see that the polarization-directions and varying viewing directions, works better than
based method can remove specular reflection componentghe existing techniques. The extension to scenes with non-
well. Unfortunately, however, the method is sensitive tonegligible parallaxes is one of the future directions of this
study.

"The result image is darker than those of the other methods due to th .
use of polarization filters. Then, the result image is scaled so that its averaéc:knowmdgments—rh's work was supported by JSPS KAK-

pixel value is the same as that of our method. ENHI Grant Numbers JP16H01676 and JP17H01766.

4.2. Comparison with Existing Techniques
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