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Abstract—Outdoor shadows can be classified into two cate-
gories: continuous shadows caused by static objects and momen-
tary shadows caused by moving objects. Since the momentary
shadows such as shadows due to a photographer are annoying
and do not exist in the original scene, they should be detected and
removed for improving image quality. In this paper, we propose
a method for detecting momentary shadows from a visible and
thermal image pair. The key idea of our proposed method
is that the continuous shadows have lower temperature than
non-shadow areas, while the momentary shadows have almost
the same temperature as the non-shadow areas. Therefore, our
method combines the shadow areas detected by using an RGB
image and the higher-temperature areas detected by using a
thermal image, and then detects the areas of momentary shadows
via image segmentation. Through a number of experiments
using real visible and thermal image pairs, we show that the
combination of visible and thermal images are effective for
detecting momentary shadows, and that our method works well
for momentary shadows with varying duration time.

Index Terms—Shadow Detection, Thermal Imaging, Image
Segmentation

I. INTRODUCTION

Outdoor shadows can be classified into continuous shad-
ows and momentary shadows on the basis of their temporal
properties. The former ones are caused by static objects such
as buildings and trees, and then they are almost static and
change gradually according to the position of the sun. On the
other hand, the latter ones are caused by moving objects such
as people and cars, and then they are dynamic and change
according to the objects as well as the sun.

For example, when we take a picture, the momentary shad-
ows caused by a photographer often cast in a scene of interest.
Such momentary shadows are more common when we take
a picture outdoors under follow light. Since the momentary
shadows are annoying and do not exist in the original scene,
they should be detected and removed for improving image
quality. In this study, we propose a method for detecting
momentary shadows in images taken under sunlight.

Detecting (and removing) shadows is one of the most
important research topics in image processing and computer
vision, and has been studied for a long time. Shadow detection
and removal are useful for illumination estimation [10], [14],
[16], [17], shape reconstruction [8], camera calibration [7],
and preprocessing for computer vision tasks such as object

detection and tracking [2], [12]. Not only physics-based ap-
proach [5], [6], [20] but also learning-based approach [4],
[9], [13], [18] are proposed recently. Unfortunately, however,
continuous shadows and momentary shadows have the same
brightness and color, when they cast on the same surface.
Therefore, it is difficult, even impossible to distinguish those
shadows from ordinary RGB images.

In this paper, we propose a method for detecting momentary
shadows from a visible and thermal image pair. The key idea
of our proposed method is that the continuous shadows caused
by static objects have lower temperature than non-shadow
areas, while the momentary shadows caused by moving objects
have almost the same temperature as the non-shadow areas.
Specifically, our method combines the shadow areas detected
by using an RGB image and the higher-temperature areas
detected by using a thermal image, and then detects the areas
of momentary shadows via image segmentation.

To confirm the effectiveness of our proposed method, we
conducted a number of experiments using real visible and
thermal image pairs taken outdoors, and evaluated the per-
formance of our method both qualitatively and quantitatively.
Furthermore, we study the performance of our method under
varying duration time of momentary shadows; the temperature
of momentary shadows falls as the duration time increases, and
then it becomes difficult to distinguish momentary shadows
from continuous shadows.

The main contribution of this study is threefold. First,
as far as we know, this is the first method for detecting
momentary shadows from one-shot visible and thermal image
pair without using temporal information. Our study is a novel
application of thermal imaging, which becomes more common
recently. Second, we experimentally show that the combination
of visible and thermal images are effective for detecting
momentary shadows. The experimental results also show that
our method works well for momentary shadows with varying
duration time. Third, our dataset of visible and thermal image
pairs will be made publicly available after publication.

II. RELATED WORK

A. Shadow detection and removal

Conventionally, shadow detection and removal are tack-
led with physics-based approach. For example, Finlayson et
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Fig. 1. The flowchart of our proposed method: (a) an input visible image, (b) a shadow map, (c) an input thermal image, (d) a temperature map, (e) foreground
candidates, (f)(g) background candidates, (h) initial markings for foreground areas, (i) initial markings for background areas, and (j) a momentary shadow
map.

TABLE I
THE KEY IDEA OF OUR PROPOSED METHOD. THE SHADOW AREAS

DETECTED BY USING A VISIBLE IMAGE AND THE HIGHER-TEMPERATURE
AREAS DETECTED BY USING A THERMAL IMAGE ARE COMBINED.

thermal
higher temperature lower temperature

shadow foreground background
visible (momentary shadows) (continuous shadows)

non-shadow background background

al. [5], [6] derive the invariant direction in a 2D chromaticity
feature space, and Yu et al. [20] make use of a linear structure
in the RGB color space. Recently, learning-based approach
achieves better performance especially under uncontrolled
conditions. For example, Khan et al. [9] use deep CNNs, and
Nguyen et al. [13], Wang et al. [18], and Ding et al. [4] pro-
pose GAN-based methods: conditional GAN (cGAN), stacked
conditional GAN (ST-CGAN), and attentive recurrent GAN
(ARGAN) respectively.

Unfortunately, however, it is difficult, even impossible to
classify momentary shadows and continuous shadows by using
the above methods. This is because they use ordinary color
images as input, and momentary shadows and continuous
shadows have the same brightness and color when they cast
on the same surface.

Our proposed method is similar to Xiao et al. [19] in the
spirit that a novel modality different from an RGB image
is incorporated into shadow detection (and removal). Their
method makes use of depth cues and can handle both hard
and soft shadows within the same framework. In contrast to
the above method, we make use of thermal cues and achieve
the classification between momentary shadows and continuous
shadows from one-shot visible and thermal image pair without
using temporal information.

B. Thermal imaging

A thermal camera can capture the infrared (IR) radiation
from an object of interest, while an ordinary color camera cap-
tures the reflected light from the object surface illuminated by
a light source. Because the SPD (spectral power distribution)

of the radiation depends on the temperature of the object, we
can measure the spatial distribution of temperature by using
thermal cameras. Therefore, thermal images are important for
classifying objects with different temperatures.

For example, Davis et al. [3] combine visible and thermal
images for background subtraction and achieve robust person
detection. Bulanon et al. [1] combine visible and thermal
images for robustly detecting fruits. Thermal imaging is useful
also for face detection and recognition in low light conditions.
Zhang et al. [21] propose GAN-based method for thermal to
visible face image conversion.

In this study, we exploit thermal imaging for shadow
detection. In particular, we show that thermal cues are effective
for classifying momentary shadows and continuous shadows
without using temporal information. Our study is a novel
application of thermal imaging, which becomes more common
as consumer thermal cameras become widespread recently.

III. PROPOSED METHOD

The continuous shadows caused by static objects have lower
temperature than non-shadow areas, while the momentary
shadows caused by moving objects have almost the same
temperature as the non-shadow areas. Therefore, as shown in
TABLE I, our proposed method detects momentary shadows
from a visible and thermal image pair; it combines the shadow
areas detected by using the visible image and the higher-
temperature areas detected by using the thermal image, and
then detects the areas of momentary shadows via image
segmentation.

Specifically, as shown in Fig. 1, our proposed method (A)
labels the visible image pixels, (B) labels the thermal image
pixels, (C) combines those labels from the visible and thermal
images, (D) marks foreground and background areas, and
finally (E) segments foreground and background areas via
graph cut based image segmentation. The rest of this section
describes each step of our method in more detail.

A. Labeling visible image pixels

First, as shown in Fig. 1 A, we label each pixel of (a) an
input visible image as shadow or non-shadow, and obtain (b) a
shadow map. We can make use of existing techniques for the
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Fig. 2. The qualitative results of our proposed method on 8 scenes: (a) a visible image, (b) a thermal image, (c) the ground truth of momentary shadows, (d)
the result of our method, and (e) the result of ST-CGAN [18] for each scene. The background surfaces on which shadows cast are (i)(ii)(iii)(vii) asphalt, (iv)
vinyl, (v) sand, (vi) brick, and (viii) grass.

TABLE II
THE QUANTITATIVE RESULTS OF OUR PROPOSED METHOD AND ST-CGAN: THE PRECISION AND RECALL OF THE DETECTED MOMENTARY SHADOWS.

scene (i) (ii) (iii) (iv) (v) (vi) (vii) (viii)
ours precision 0.967 0.932 0.990 0.970 0.970 0.994 0.941 0.985

recall 0.970 0.986 0.996 0.997 0.986 0.996 0.994 0.672
ST-CGAN [18] precision 0.242 0.185 0.233 0.534 0.796 0.803 0.734 0.580

recall 1.000 0.989 0.999 0.997 1.000 1.000 1.000 0.996

labeling of visible image pixels. In our current implementation,
we used one of the state-of-the-art methods: ST-CGAN [18].
The white and black pixels in (b) the shadow map stands for
shadow and non-shadow pixels respectively.

B. Labeling thermal image pixels

Second, as shown in Fig. 1 B, we label each pixel of
(c) an input thermal image as higher temperature or lower
temperature, and obtain (d) a temperature map. We assume
that a scene of interest has low thermal conductivity, and
the temperature at a surface point gradually changes when
the momentary shadow due to a moving object casts on the
point. Since the shadows caused by the sun is classified into
umbra and penumbra, we classify the thermal image pixels into
three classes according to the pixel values (temperatures) by
thresholding [15]. The white pixels in (d) the temperature map
stand for higher-temperature ones (the first and second classes
with higher temperatures), and the black pixels stand for lower-
temperature ones (the third class with lower temperatures)
respectively.

C. Combining labels from visible and thermal images

Third, as shown in Fig. 1 C, we combine the above labels
independently estimated from the visible and thermal images,
and obtain (e) a foreground map, (f) a background map, and (g)
another background map. The foreground pixels, i.e. the white
pixels in (e), are shadowed and have higher temperature, and
therefore they are the candidates for momentary shadows. On
the other hand, the first background pixels, i.e. the white pixels
in (f), are shadowed and have lower temperature, and therefore
they are the candidates for continuous shadows. The second
background pixels, i.e. the white pixels in (g), are considered
as non-shadow.

D. Marking foreground and background areas

Forth, as shown in Fig. 1 D, we automatically mark (h)
foreground and (i) background areas in order to provide them
as the initial conditions of graph cut based image segmenta-
tion. Because the labels near the boundaries between black and
white areas in (e), (f), and (g) often have low confidence, we
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Fig. 3. The results on sand under varying duration time; the visible image and
the detected momentary shadows (top) and the corresponding thermal images
(bottom).
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Fig. 4. The results on asphalt under varying duration time; the visible image
and the detected momentary shadows (top) and the corresponding thermal
images (bottom).

obtain the initial markings of the foreground and background
areas by shrinking and thinning those areas.

E. Segmenting foreground and background areas

Finally, as shown in Fig.1 E, we segment the foreground and
background areas from the visible and thermal image pair and
the initial markings via graph cut based image segmentation,
and obtain (j) a momentary shadow map. We can make use
of a variant of existing techniques for graph cut based image
segmentation. In our current implementation, we used a variant
of Lazy Snapping [11]. Specifically, we use a four-channel
image as input; three are from a visible image with RGB
channels and one is from a thermal image with a single channel
(temperature). The white pixels in (j) the momentary shadow
map stand for momentary shadows, and the black pixels stand
for continuous shadows and non-shadow areas respectively.

IV. EXPERIMENTS

To confirm the effectiveness of our proposed method, we
conducted a number of experiments using real visible and
thermal image pairs taken outdoors. We used PI200 from
Optris and C5 from FLIR, which can capture a pair of visible
and thermal images at the same time. Because the viewpoints
of a thermal camera and a visible camera in PI200 are slightly
different, we aligned the captured thermal and visible images
by using the homography matrix estimated in advance. The
numbers of pixels of thermal images are lower than those of
color images (1/16 and 1/4 for PI200 and C5 respectively), and
then the boundaries between higher- and lower-temperature
areas are blurred to some extent. We show the qualitative
and quantitative results on 10 scenes in total, for which we
manually labeled the ground truth of momentary shadow areas.
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Fig. 5. The precision and recall of the momentary shadows detected on (a)
sand and (b) asphalt.

A. Evaluation and comparison

Fig. 2 shows the qualitative results of our method on 8
scenes: (a) a visible image, (b) a thermal image, (c) the
ground truth of momentary shadows, and (d) the result of our
method for each scene. The background surfaces on which
shadows cast are (i)(ii)(iii)(vii) asphalt, (iv) vinyl, (v) sand,
(vi) brick, and (viii) grass. Those results qualitatively show the
effectiveness of our method; we can see that the momentary
shadow areas in our result, i.e. the white pixels in (d) are
almost the same as those in the ground truth, i.e. the white
pixels in (c) for the scenes from (i) to (vi). TABLE II shows the
quantitative results of our method: the precision and recall of
the momentary shadows detected by using our method. Those
results quantitatively show the effectiveness of our method;
we can see that both the precision and recall are high for the
scenes from (i) to (vi).

The failure cases of our proposed method are shown in Fig.2
(vii) and (viii). In the first case (vii), we can see that a part
of the continuous shadows due to a thin object, a pole in
this case, are misclassified as momentary shadows. This is
because the temperature of such shadows, i.e. penumbra are
higher than that of umbra as shown in the thermal image. In
the second case (viii), we can see that a part of the momentary
shadows due to a photographer and a tripod are misclassified
as continuous shadows. We can see that the thermal image
does not necessarily work well for classifying momentary
shadows and continuous shadows in this case, because the
leaves of grass cast shadows each other and the temperature
of non-shadow areas is not high.

In Fig. 2 and TABLE II, we show the results of ST-
CGAN [18], one of the state-of-the-art shadow detection
methods, for comparison. Since the purpose of ST-CGAN
is shadow detection (and removal), it detects shadows, that
include both momentary shadows and continuous shadows,
from a visible image as shown in Fig. 2 (e). TABLE II shows
that ST-CGAN works well as shadow detector, and achieves
high recall. Note that ST-CGAN has higher recall than our
proposed method in theory, because the momentary shadows
are a subset of shadows detected by using ST-CGAN. On the
other hand, the precision of ST-CGAN is small, because it does
not distinguish momentary shadows and continuous shadows.
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B. Detection under varying duration time

The temperature of momentary shadows goes down as
the duration time increases, and then it becomes difficult
to distinguish momentary shadows from continuous shadows.
Accordingly, we study the performance of our method under
varying duration time of momentary shadows. Specifically, we
captured the sequence of visible and thermal image pairs for 5
min with the fps of 1 sec, and studied the precision and recall
of the momentary shadows detected from each pair by using
our method. We tested two scenes whose background surfaces
are sand and asphalt respectively.

First, Fig. 3 shows the detected momentary shadows (the
white pixels at the top row) on sand under varying duration
time. We can see that the momentary shadows are accurately
detected when the duration time increases up to 5 min, even
though the temperature of the momentary shadows slightly
decreases as the thermal images (the bottom row) show. Fig. 5
(a) shows the precision and recall of the detected momentary
shadows. We can also see that our method achieves both high
precision and high recall when the duration time increases up
to 5 min.

Second, Fig. 4 shows the detected momentary shadows on
asphalt under varying duration time. We can see that the
momentary shadows are accurately detected when the duration
time increases up to 90 sec, but a part of continuous shadows is
misclassified as momentary shadows for longer duration time.
This is because the temperature of momentary shadows on
asphalt rapidly falls, and it becomes difficult to distinguish
momentary shadows from continuous shadows on the basis
of temperature. Fig. 5 (b) also shows that the precision of
the detected momentary shadows decreases when the duration
time is longer than 90 sec.

Those results show that our proposed method works well
under varying duration time of momentary shadows, e.g. 90
sec in the above examples. On the other hand, the performance
of our method depends on background surfaces, more specif-
ically on the thermal conductivities of background surfaces;
asphalt has higher thermal conductivity than sand.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a method for detecting momen-
tary shadows from one-shot visible and thermal image pair
without using temporal information. Our proposed method
makes use of the fact that the continuous shadows caused
by static objects have lower temperature than non-shadow
areas, while the momentary shadows caused by moving objects
have almost the same temperature as the non-shadow areas.
Specifically, our method combines the shadow areas detected
by using the visible image and the higher-temperature areas
detected by using the thermal image, and then detects the areas
of momentary shadows via image segmentation. Through a
number of experiments using real visible and thermal image
pairs, we show that the combination of visible and thermal
images are effective for detecting momentary shadows, and
that our method works well for momentary shadows with
varying duration time. Our future study includes the extension

to complex background surfaces; we can take the difference
in thermal conductivity into consideration via background
material segmentation. The extension to artificial light sources
such as LEDs and fluorescent lamps with negligible heat
radiation is another future direction of this study.
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